A New Derivative-Free Optimization Method for Partially Separable Functions

Laurent DUMAS

with D. Ding (IFPEN), B. Marteau (PhD, IFPEN)

Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles France

CORS/ INFORMS 2015, June, 15th

・ロト ・日本 ・モート ・モート

Outline of the talk

1 An inverse problem in oil industry

- 2 Trust region methods
- 3 The new algorithm for partially separable functions
- 4 Numerical results

・ロン ・回と ・ヨン・

History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function Objectives

1 An inverse problem in oil industry

- History matching in reservoir engineering
- Main characteristics of the inverse problem
- Partial separability of the cost function
- Objectives

2 Trust region methods

3 The new algorithm for partially separable functions

4 Numerical results

History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function Objectives

History matching in reservoir engineering

・ロン ・回 と ・ ヨ と ・ ヨ と

History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function Objectives

Main characteristics of the inverse problem

- High computational cost of the objective function : each evaluation of (x₁, ..., x_n) → f(x₁, ..., x_n) needs the simulation of a costly geological model.
- Large number of parameters.
- Partial separability of the cost function.

History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function Objectives

Partial separability of the cost function

The objective function can be written in the following form :

$$f(x_1, \dots, x_n) = \frac{1}{2} \sum_{i=1}^{n_1} \frac{\omega_i^P}{N_P(i)} \sum_{j=1}^{N_P(i)} \left(\frac{P_{i,j}^{obs}(x) - P_{i,j}^{sim}(x)}{\sigma_{i,j}^P}\right)^2$$

$$= \sum_{i=1}^{P} f_i(x_1, \dots, x_n)$$

$$\approx \sum_{i=1}^{P} f_i(x_{1_i}, \dots, x_{n_i})$$

with $\forall i, n_i \leq n$

(ロ) (同) (E) (E) (E)

History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function **Objectives**

- The inverse problem can be summarized as follows : *obtain* the best history matching solution, given a small and fixed number of cost function evaluations.
- Some questions arise at each stage of the inverse problem :
 - Parametrization : find the most adapted parameters of the problem.
 - Initialization : find the best initialization process.
 - Optimisation : exploit the specific properties of the cost function.

An inverse problem in oil industry

Trust region methods The new algorithm for partially separable functions Numerical results History matching in reservoir engineering Main characteristics of the inverse problem Partial separability of the cost function **Objectives**

- The lack of information about the cost function gradient lead to consider Derivation Free Optimization (DFO) methods.
- Among DFO methods (direct methods, evolutionary algorithms, response surface, trust region, etc...), trust region methods have been chosen.

・ロン ・回と ・ヨン ・ヨン

Description The NEWUOA method A self improving geometry principle

An inverse problem in oil industry

- 2 Trust region methods
 - Description
 - The NEWUOA method
 - A self improving geometry principle
- 3 The new algorithm for partially separable functions

4 Numerical results

Description The NEWUOA method A self improving geometry principle

Description of a trust region method

A simple algorithm

- Initialisation Construction of an initial quadratic model m₀ of the cost function on B(x₀, Δ₀).
- **2** Iteration k
 - Compute x_k^+ , the minimum of m_k on $B(x_k, \Delta_k)$.
 - Remplace the current most far interpolation point by x_k^+
 - If x_k⁺ is 'good', then x_{k+1} := x_k⁺ and increase the trust region radius, else x_{k+1} := x_k and reduce the trust region radius.
 - Build the new interpolation model m_k .

3 Stopping condition. Stop if the gradient model at x_k is small.

< 口 > < 回 > < 回 > < 回 > < 回 > <

Description The NEWUOA method A self improving geometry principle

The acception criterion

 The acception/rejection criterion of x_k⁺ is based on the following rate :

$$\rho_k = \frac{f(x_k^+) - f(x_k)}{m_k(x_k^+) - f(x_k)}$$

• The model is said to be 'good' if $\rho_k \ge \nu$ with $\nu \in]0,1[$.

・ロン ・回と ・ヨン ・ヨン

2

Description The NEWUOA method A self improving geometry principle

The quadratic model

- In a DFO approach, the quadratic model on the trust region is obtained by quadratic Lagrange interpolation with $p = \frac{(n+1)(n+2)}{2}$ points.
- It is possible to reduce the number of interpolation points by solving a least square minimization problem for some of the polynomial coefficients (Powell, *NEWUOA algorithm 2004*).

イロン イヨン イヨン イヨン

Description The NEWUOA method A self improving geometry principle

The NEWUOA initialization

- The NEWUOA algorithm uses m = 2n + 1 points for the initialization step.
- The initial interpolation points are chosen around the starting point x₀:

$$\forall i \in \{1, 2, ..., n\} \begin{cases} y_{i+1} = x_0 + \rho e_i \\ y_{i+n+1} = x_0 - \rho e_i \end{cases}$$

イロン イヨン イヨン イヨン

2

Description The NEWUOA method A self improving geometry principle

Poisedness of the interpolation set

- It is necessary to check at each iteration the well poisedness of the interpolation set.
- The set Y = {y₁,...y_m} is said to be Λ poised on B if its associated Lagrange polynomial family is such that :

$$\Lambda \geq \max_{j=1,\ldots,m} \max_{x \in B} |I_j(x)|$$

• It is possible to ensure at each iteration the Λ-poisedness, but with an additional computational cost.

・ロン ・回 と ・ ヨ と ・ ヨ と

Description The NEWUOA method A self improving geometry principle

A self improving geometry principle

- A self improving geometry principle has been introduced by Scheinberg and Toint (2009).
- It is based on the following lemma :

Lemma

Let $\beta \in (0,1)$. For all $\Lambda > 1$, there exists k_{Λ} such that if iteration k is unsuccessfull, that is $\rho_k < \nu$, and :

$$\mathcal{F}_k := \{y_{k,j} \in Y_k \; \textit{s.t.} \; ||y_{k,j} - x_k|| > eta \Delta_k \; \textit{and} \; \mathit{l}_{k,j}(x_k^+)
eq 0\} = \emptyset$$

with $\Delta_k < k_{\Lambda} || \nabla m_k(x_k) ||$, then the set

 $C_k := \{y_{k,j} \in Y_k \setminus \{x_k\} \text{ s.t. } ||y_{k,j} - x_k|| \le \beta \Delta_k \text{ and } I_{k,j}(x_k^+) \ge \Lambda\}$

is non-empty.

Description The NEWUOA method A self improving geometry principle

A self improving geometry principle

Trust Region algorithm with geometry self correction

- Initialization
- Oriticality test
- **O Iteration** *k*
 - Compute x_k^+ the minimum of m_k on $B(x_k, \Delta_k)$.
 - If x_k⁺ is good, replace x_k by x_k⁺, increase Δ_k and replace the most far interpolation point by x_k⁺.
 - If x_k⁺ is not good, keep x_k and Δ_k and replace one point in F_k (far from x_k⁺) or in C_k (near x_k⁺) by x_k⁺, if one among them is non empty, else reduce Δ_k.
 - Build the new interpolation model m_k .

イロン イヨン イヨン イヨン

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method A convergence result

An inverse problem in oil industry

2 Trust region methods

The new algorithm for partially separable functions

- The initialization principle
- The quadratic model
- A self improving geometry principle
- The new DFO-PSOF method
- A convergence result

Numerical results

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method A convergence result

The initialization principle

• In the case of a cost function f of the type :

$$f(x_1, x_2) = f_1(x_1) + f_2(x_2)$$

the initialization can be done with 3 points instead of 5 :

 More generally, initialization is done with a reduced number of points by exploiting the independance of variables (using a coloured graph).

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method A convergence result

The quadratic model

• A different quadratic model *m_i* for each partial objective function is created :

$$m_k(x_1,\ldots,x_n)=\sum_{i=1}^p m_k^i(x_{1_i},\ldots,x_{n_i})$$

- It is thus expected to give a more accurate model, with less interpolation points.
- However, a strategy for improving at least one submodel at each iteration is needed.

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method A convergence result

The dominant submodel

• Define the improvement rate of the *i*-th submodel :

$$\rho_{k}^{i} = \frac{f_{k}(x_{k}^{+}) - f_{k}(x_{k})}{m_{k}^{i}(x_{k}^{+}) - m_{k}(x_{k})}$$

 Among them, the dominant submodel is the one maximizing its improvement :

$$j = \arg \max_{i} \left(m_k^i(x_k^+) - m_k^i(x_k) \right)$$

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method A convergence result

A self improving geometry principle

A self improving geometry principle has been proved for the dominant submodel :

Lemma

Let F_k^i and C_k^i the extensions of F_k et C_k to submodel *i*. At iteration *k*, for all $\Lambda > 1$, if *j* is the index of the dominant submodel, and :

$$egin{array}{lll} & \Delta_k \leq k_{\sf A} \, \| {f g}_k | \ &
ho^j_k <
u \ & {f F}^j_k = \emptyset \end{array}$$

then $C_k^j \neq \emptyset$.

イロン イヨン イヨン イヨン

The initialization principle The quadratic model A self improving geometry principle **The new DFO-PSOF method** A convergence result

The new DFO-PSOF method

DFO-PSOF algorithm

- Initialization
- Oriticality test
- **1teration** *k*
 - Compute x_k⁺ the minimum of x_k on a trust region set, then compute ρ_k and each ρ_kⁱ.
 - Treatment of each submodel for the 3 cases :
 - $\rho_k > \nu$,
 - $\rho_k < \nu$ and $\rho_k^i < \nu$ with the sets F_k^i and C_k^i (if non empty)
 - $\rho_k < \nu$ and $\rho_k^i > \nu$
 - If no improvement is done at the previous stage (only the last case) : improvement of at least one non dominant model.
 - Update Δ_k .
 - Build the new model m_k and submodels m_k^i .

The initialization principle The quadratic model A self improving geometry principle The new DFO-PSOF method

A convergence result

A convergence result

Theorem

Assume that :

(i) the cost function f is differentiable and ∇f is Lipschitz continuous on a set \mathcal{V} including all the iterations, (ii) f is bounded from below on \mathcal{V} , (iii) for all $k \in \mathbb{N}$, $||H_k|| \leq C$

then, the sequence $(x_k)_{k\in\mathbb{N}}$ of the DFO-PSOF algorithm is such that :

 $\lim_{k\to+\infty}\inf\nabla f(x_k)=0$

Numerical results on analytic test functions Application in reservoir engineering

An inverse problem in oil industry

- 2 Trust region methods
- 3 The new algorithm for partially separable functions

4 Numerical results

- Numerical results on analytic test functions
- Application in reservoir engineering

イロン イヨン イヨン イヨン

Numerical results on analytic test functions Application in reservoir engineering

Numerical results on analytic test functions

Some tests have first been made on classical partially separated test functions : for $x = (x_1, ..., x_n)$, define :

$$DQDRTIC(x) = \sum_{i=1}^{n-2} (x_i^2 + x_{i+1}^2 + x_{i+2}^2)$$

$$LIARWHD(x) = \sum_{i=1}^{n} (4(x_i^2 - x_1)^2 + (x_i - 1)^2)$$

$$BDQRTIC(x) = \sum_{i=1}^{n-4} ((-4x_i + 3)^2 + (x_i^2 + x_{i+1}^2 + x_{i+2}^2 + x_{i+3}^2) + 5x_n^2)$$

$$ARWHEAD(x) = \sum_{i=1}^{n-1} ((x_i^2 + x_n^2)^2 - 4x_i + 3)$$

$$ROSENBROCK(x) = \sum_{i=1}^{n-1} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Numerical results on analytic test functions Application in reservoir engineering

Numerical results on analytic test functions

• The following table compares the DFO-PSOF results with a NEWUOA type method (number of evaluations for reaching convergence) :

Function	10 param.			
	NEWUOA	PSOF	NEWUOA	PSOF
DQDRTIC	204	21	+1300	20
LIARWHD	174	51	1215	66
BDQRTIC	231	149	+2000	169
ARWHEAD	368	43	+1300	45
ROSENBROCK	244	128	+1600	233

イロン イヨン イヨン イヨン

Numerical results on analytic test functions Application in reservoir engineering

Numerical results on analytic test functions

The cost function value at the end of the algorithm is the following :

Function	10 param.		50 param.	
	NEWUOA	PSOF	NEWUOA	PSOF
DQDRTIC	$1.9 * 10^{-4}$	$8.0 * 10^{-17}$	13000	$9.3 * 10^{-18}$
LIARWHD	0.01	$6.0 * 10^{-9}$	0.01	$3.6 * 10^{-7}$
BDQRTIC	37.9	18.5	312	178.9
ARWHEAD	2.77	$7.7 * 10^{-9}$	2.9	$1.8 * 10^{-8}$
ROSENBROCK	1.8	$6.0 * 10^{-5}$	129	0.04

イロン イヨン イヨン イヨン

2

Numerical results on analytic test functions Application in reservoir engineering

Numerical results on analytic test functions

The DFO-PSOF results are almost independent of the parameters number :

Numerical results on analytic test functions Application in reservoir engineering

Application in reservoir engineering

• The PUNQ test case is a synthetic test case respresentative of a real oil field :

・ロト ・回ト ・ヨト ・ヨト

æ

Numerical results on analytic test functions Application in reservoir engineering

Application in reservoir engineering

- The PUNQ test case includes 6 producing wells and 7 injectors.
- The following partial separability is assumed :

f_{PRO-1}	X_{PRO-1}	X_{INJ-1}	X_{PRO-2}	X_{INJ-6}	X_{INJ-7}	
f_{INJ-1}	X_{PRO-1}	X_{INJ-1}	X_{PRO-2}	X_{INJ-2}		
f_{PRO-2}	X_{PRO-1}	X_{INJ-1}	X_{PRO-2}	X_{INJ-2}	X_{PRO-2}	X_{INJ-7}
f_{INJ-2}	X_{INJ-1}	X_{INJ-2}	X_{PRO-2}	X_{INJ-3}	X_{PRO-3}	
f_{PRO-3}	X_{INJ-2}	X_{PRO-3}	X_{INJ-3}	X_{PRO-4}	X_{INJ-4}	X_{INJ-7}
f_{INJ-3}	X_{PRO-2}	X_{INJ-3}	X_{PRO-3}			
f_{PRO-4}	X_{INJ-3}	X_{PRO-4}	X_{INJ-4}	X_{INJ-5}	X_{INJ-7}	
f_{INJ-4}	X_{PRO-2}	X_{PRO-3}	X_{INJ-4}			
f_{PRO-5}	X_{PRO-4}	X_{PRO-5}	X_{INJ-5}	X_{INJ-6}	X_{INJ-7}	
f_{INJ-5}	X_{PRO-4}	X_{PRO-5}	X_{INJ-5}	X_{INJ-6}		
f_{PRO-6}	X_{PRO-1}	X_{PRO-5}	X_{PRO-6}	X_{INJ-6}	X_{INJ-7}	
f_{INJ-6}	X_{PRO-5}	X_{PRO-6}	X_{INJ-6}			
f_{INJ-7}	X_{PRO-2}	X_{PRO-3}	X_{PRO-4}	X_{PRO-5}	X_{PRO-6}	X_{INJ-7}

Numerical results on analytic test functions Application in reservoir engineering

Application in reservoir engineering

• The obtained results show a large improvement by using PSOF, compared to NEWUOA :

Numerical results on analytic test functions Application in reservoir engineering

Application in reservoir engineering

• The following figure displays the improvement after optimization of history matching on an arbitrary well :

Image: A math a math

3

Numerical results on analytic test functions Application in reservoir engineering

Conclusions

- A new DFO method has been developped to solve an inverse problem in oil industry.
- The new method consists in adapting a trust region method to the case of partially separable cost functions.
- By exploiting the partial separability of the cost function at the initialization stage and during the optimization process, the convergence rate has been improved compared to other classical trust region methods.