A robust method for deblurring and decoding a barcode image

In collaboration with

Mohammed El Rhabi and Gilles Rochefort

RealEyes3D, Saint Cloud

17/05/2011
1 Description of the problem

2 Deblurring and decoding a barcode image
Description of the problem

Deblurring and decoding a barcode image
Deblurring and decoding a barcode image

- The problem of deblurring and decoding a barcode image is an important application for smartphones equipped with a low quality camera.

- Starting from an image as the one depicted above, the problem is to decode it, that is find the associated barcode number.

- Three factors can degrade the quality of the image and make it hardly decodable: blur due to out of focus, noise, and also variable illumination.
How to decode a barcode

- The decoding of a barcode is based on the precise computation of the various widths of black and white lines.

- For instance, in the most popular family of barcodes called EAN13, an alphabet is used to convert the widths to a code of 13 numbers:

- A small error on the width measurement of a line can lead to a wrong decoding of the barcode.
The model of blur and noise

- The mathematical model describing the out-of-focus blur, noise and variable illumination corresponds to the following transform of the initial signal $u \in L^2(\Omega)$:

$$u_0(x) = l(x)(k \ast u)(x) + n(x)$$

- The out-of-focus blur operator takes the form of a convolution with the kernel:

$$k(x) = \frac{1}{2r} \mathbf{1}_{|x|<r}$$

- The variable illumination consists in multiplying the blurred signal by a function $x \rightarrow l(x)$ with values in $[0, 1]$.
The associated inverse problem

The associated inverse problem consists thus in finding the exact barcode value starting from an observed signal \(u_0 \in L^2(\Omega) \) as the one presented below:

With the previous model, the objective is to find \((r^*, l^*, u^*)\) minimizing the cost function

\[
J(r, l, u) = \int_{\Omega} |l(k * u) - u_0|^2 dx
\]
The associated inverse problem

- In the deterministic approach, a total variation term of the type $\int_{\Omega} |\nabla u(x)| dx$ is added to the cost function in order to make the problem well-posed (Esedoglu, *Inverse problems*, 2003).
- In the case of a barcode image, a penalty term taking into account the binary form of the image is also necessary.
- With this method, it is possible to restore blurred barcode images but only with a small or medium noise and without variable illumination.
1. Description of the problem

2. Deblurring and decoding a barcode image
Deblurring and decoding: the algorithm

- The simultaneous deblurring and decoding of a barcode image with blur, noise and variable illumination is done here by using an evolutionary algorithm, namely a genetic algorithm.
- The cost function that has to be minimized is defined here on a mixed search space (discrete/contionous).
- The robustness of evolutionary algorithms allows in particular the use of the mean square error without adding any regularization term at the cost function.
The search space for u is discrete and takes into account the shape of a barcode made of 30 lines of different widths.

More precisely, $U = (U_1, \ldots, U_{61}) \in \mathbb{N}^{61}$ where U_i is the length of the ith black or white line.

U_1 and U_{61} play a particular role because they correspond to the left, respectively right, unknown margin at each side of the barcode in the image.
Deblurring and decoding: the search space

- Note also that the following constraint holds:

\[\sum_{i=1}^{61} U_i = M \]

where \(M \) is the width of the image.

- The search space for \(r \) and \(l \) is of continuous type. A spline interpolation is in particular used for describing the variable illumination.
Deblurring and decoding: the darwinian principles

- For the discrete variable U, a N-points crossover is used. Given two parents, the offsprings are computed by exchanging N successive portions between them.
- The mutation process corresponds to the resizing of the two offsprings to the original size of the image.
- For the continuous variables r and I, a barycentric crossover and a non uniform mutation is used.
Example 1: determination of blur radius and variable illumination of an image with a known barcode, no noise:
Example 2: determination of a barcode characteristics with a known blur, no illumination, no noise:
Example 3: determination of a barcode characteristics without any information on blur, illumination and noise on the image:

with the corresponding barcode number: 4747379384732.
Example 4: decoding of a real barcode image with blur, noise and variable illumination:

with the corresponding barcode number: **4025515825135**.
Deblurring and decoding: obtained results

- The results show a very good reproducibility of the method as well as a very strong insensitivity to the signal to noise ratio of the image.
- For real images, a correct decoding of the barcodes has been obtained independently of the camera, with a very promising success rate.
- At this stage, it is not possible to deblur and decode in real time, but the whole phase can be achieved in a few seconds by running it on a parallel server.