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Remarks on the Notion of Mean Free Path for a 
Periodic Array of Spherical Obstacles 
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In this note, we explain in detail how the notion of mean free path is related to 
the mathematical results obtained in our previous paper. 
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The purpose of  this note is to clarify ambiguities concerning the not ion of  
mean free path in our  previous article ~ and its compan ion  paperJ  3~ We 
are grateful to N. Chernov  for bringing these ambiguities to our  attention. 
However,  we should say that the ambiguous  terminology does not  affect the 
mathematical  results in Ref. 8. All the theorems, lemmas, and corollaries in 
Ref. 8 are true as stated, and do not  explicitly refer to any definition of  mean 
free path. 

1. In the case of  a Lorentz  gas, the not ion of  free path length is 
uniquely defined. The specific example studied in Ref. 8 is as follows. Let 
r e  ]0, 1/2[ and ~,>~ 1; for all e~  ]0, 1[, define 

Z,: = { x ~ R" [ dist(x, e"Z) > re r } ( 1 ) 

The lattice e" acts by translations on Z,:; let Y , : = Z J e Z " .  The "free path 
length" starting from the point  x ~ Z,: in the direction w s S" ~ is the non-  
negative Borel function 

r,:(., .;~,): Y,: x S " -  ~ -*R + (2) 
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defined by the lbrmula 

r,:(x, co;~,)=inf{ t>OIx-tcoeOZ,:}  = s u p { t > ~ O l [ x , x - t o J ] c Z , : }  (3) 

There are two different, natural  probabil i ty measures on Y,: x S"-~ with 
respect to which r,: can be studied as a r andom variable. One is the 
normalized Lebesgue measure/L,:. ~. on Y,: x S" - ~" 

P,:. ~. = Q,71 dx dco, Q,: = dx dco-meas( Y,: x S"-  i) (4) 

The other  is the normalized measure v,:.;, concentrated on the "outgoing 
boundary"  

• . . . .  ' - . > 0 }  ( 5 )  Z,+={(x ,o~)e (aZ , :~  Y,:) a [co n,. 

(where n,. is the inward unit normal  at the point xeOZ,:) and defined by 

v,=~.=F/t dS(x)do~, F,:=dS(x)do~-meas(Z/?) (6) 

where dS(x) is the induced surface measure on OY,:. Both of  these proba-  
bility measures are natural  objects to consider. Indeed, the measure p,:. ~. is 
invariant under the broken flow on Z,: x S " -  ~ associated with 

dx dco 
- - = c o ,  - - = 0  for xCaZ,.  (7) 
dt dt 

x ( t o + O ) = x ( t , - O ) ,  co(to+O)=o~(t,-O)-2oJ(t,-O).n,.r o~ 

for x( to-OieOZ,:  (8) 

while the measure p,:. ~. is invariant under  the map s --* 2",+ defined a.e. by 

(x, co) ~ (x'  = x + r,:(x, -co; ~.) co; co' = co - 2oJ �9 n,..n,.. ) (9) 

We shall denote by $,:. ~. (resp. r ~.) the distributions of  r,: under  the measure 
ll,:.~. (resp. v,:. Q. In other  words, ~b,:. ~. and ~b,:.~. are the Borel probabil i ty 
measures on R + such that 

~,:.~.(A)=It,:.~.(r,:(.,.;~,)-t(A)), ~b,:.~.(A)=v,~.~.(r,:(.,--.;~,)-'(A)) (10) 

for all Borel measurable subsets A of  R + 
Correspondingly,  there are two possible notions of  mean free path 

associated with the periodic Lorentz  gas in Z,:: For  all T >  0, we define 

f+. 
2(e,},)= zdtp,:.~.(z) and I(e, T , ) , ) =  inf(z, T) d(~.~.(z) (11) 
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We call 2(e, y) the "geometric mean free path" and 1(~, T, 7) the "mean 
truncated free path." The truncation in the second definition is necessary 
because /(e, + o~, ),)= + c~. In the case n = 2, this follows from one of the 
theorems in Ref. 3 (which relies in particular on constructions very similar 
to those of Ref. 2). This is why we refrain from calling/(e, T, y) the mean 
free path. 

The same construction applies to the most general "billiard tables_ ''c5" 6) 
Whenever the analogue of the map (9) is ergodic for the measure v,:. ~., the 
geometric mean free path can be interpreted as the average path length 
between N successive collisions of a point particle with the obstacles (the 
boundary of Z,:) with specular reflections at the boundary of each obstacle, 
in the limit as N ~  + co. This follows immediately from the Birkhoff 
ergodic theorem, and for this reason it is natural to associate the geometric 
mean free path with billiards/s( ' '  

However if, as in Ref. 8, one is interested in the evolution of a popula- 
tion of point particles undergoing collisions only with the boundary of Z,:, 
the mean truncated free path l(e, T, ),) is more natural. In the (too) simple 
example where the particles are completely absorbed at the boundary, the 
number density f ( t ,  x, co) of particles which at time t are at position x and 
moving in the direction co is given by [see Ref. 8, formula (9)] 

f : ( t ,  x,  co) = f ( 0 ,  x - tco, co) 1,_< ~ ....... :r~ (12) 

Hence, for any compact set B c R "  and any T > 0 ,  4 

f, If,:(t, x, co)l" dx dco dt 
) .~  ~ B • .S'"  I 

~llJ],=,,ll<;~ flz i n f ( T , r , : ( x , ~ o ) ) d x d c o , ~ m e a s ( B ) l ( e ,  T, 7) (13) 
++: ,%  13 x S n - I 

Another way of saying this is that the phase space Y,: x S " -  ~ is given by 
the suspension of the map (9) under the free path length (see, for example, 
Res 4, p. 242), which is a strongly oscillating, unbounded function. Hence 
the measure v,:.r will not take into account the variations of r,;. r, as 
does tL,:. ~.. 

4 The notation a(x, y) ~ h(x, 3') means that there exists at constant C unilbrm in x and y such 
that a(x, y) <~ Ch(x, y); the notation a(.x, y) ~,.h(x, y) means the same thing except that tile 
constant C is uniforna in x only, but might depend on y. 
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2. The geometric mean free path of the periodic billiard (1) can be 
computed explicitly (see, for example, Ref. 5, ~4): 

2(e, y) = Q,: _ 1 e,,_~,r t I + O(ey ) (14) 
/ -  i g , , - i l l  .... t 

where IB"-~1 denotes the volume of the unit ball in R"-*.  The leading term 
on the right-hand side of (14) was written in Ref. 8 [cf. formula (3)] on 
heuristic grounds and given without comment as "the order of magnitude 
of the mean free path." Based on this, the critical value •,. = n/(n - 1 ) was 
introduced, since: 

�9 I f  y > ) , , . ,  2(e ,  y) - -*  +co  as e--* 0. 

�9 I f  1 ~ )' < ) ' c ,  2(e ,  ),) ---,0 as  e - - ,  0. 

We thus surmised in Ref. 8 that a population of point particles under- 
going only purely absorbing collisions with the boundary of Z,: would: 

oo Not see the boundary if ), > ),,.. 

o. Be instantaneously absorbed by the obstacles in the limit e--* 0 for 
1 ~ < Y < L -  

But since formulas (12)-(13) involve the mean truncated free path and 
not the geometric mean free path, no mathematical proof of either claim 
can rely upon the explicit formula (14) or formula (3) of Ref. 8. We do not 
know of any explicit formula for the mean truncated free path, which is 
a more elaborate quantity related to the problem (see Section 3). In 
particular, we insist that the mean truncated free path, which is implicitly 
studied in Ref. 8, is not given by formula (3) of Ref. 8 [i.e., the right-hand 
side of (14) above];  we believe this particular point may have been a 
source of confusion in Ref. 8. 

A weaker form of the mathematical statement of the o�9 alternative 
proved in Ref. 8 can be given in terms of the distribution of free paths ~b,:. r 
as follows. 

T h e o r e m  1. ( 1 ) If ~, > ),,. = n/(n - 1 ), ~b,:, r--' 0 vaguely as e --, 0. 

(2) If 17=2 and 1~<?,<?,,.=2, or if n > 2  and 1-~<y<n/ (n-2 /3) ,  
~b,:. r--' rio weakly as e --* 0. 

We recall (see, for example, Ref. 1, p. 371 and Theorem 29.1) that a 
sequence of measures on R + is said to converge vaguely to 0 if the sequence 
of integrals of any compactly supported continuous function converges to 
0; the convergence is weak if the same holds for bounded continuous func- 
tions (and not only for those having compact support). 
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C o r o l l a r y 2 .  (1) I f~ ,>~ , , .=n / (n - ] ) ,  l ( e , T , ~ , ) ~ T a s e ~ O f o r a l l  
T>0_ 

(2) If n = 2  and l~<y<~,, .=2, or if n > 2  and l<~9,<n/(n-2/3) ,  
l(e, T, ~ , )~0  as e ~ 0  for all T > 0 .  

Corollary 2 is a weaker formulation of the results in Ref. 8. For example, 
Theorems IA and 1B of Ref. 8 provide estimates of the rates of convergence 
in Corollary 2. Theorems 2A and 2B consider the case where the obstacles 
(the boundary of Z,:) are partially absorbing (some fraction of the particles 
impinging on the boundary is specularly reflected). 

Point 2 in Theorem 1 is established by the following argument, 
rephrasing Remark 1 1 of Ref. 8. Let 

~(s, c) = {co ~ s " -  '1 Io9. kl >/C Ikl- ' .  k ~ Z"\{0} }, ~ ( s ) =  ~) ~(s, c) 
c>o (15) 

We recall two classical facts: first, @(s)' has measure 0 in S"-~; second, 
@(s, C ) = ~  for all C > 0  i f s < n - 1 .  If co~@(s, C), one has 

1 
r,:(x, co;),),~,,-~-z.e 2-r  for 11=2 (seeRef. 8, Theorem3) (16) 

C W  

and 

1 
r,:(x, 09; ),) ~,, Cr.~+,,/2 e t -c~,- i>(.,.+,,/_,~ for n > 2 (see Ref. 7, Theorem 1 ) 

(17) 

Hence, if coe@(s), if 17=2 and 0~<~ , -1<1 ,  or if n > 2  and 0 ~ < y - l <  
(n - 1 + n/2) - t ,  r,:(x, 09; ),) ~ 0; in other words, r,:(., �9 ; ),) ~ 0 p,:. ~.-a.e., 
which proves Theorem 1, part 2. | 

3. In this last section, we shall state and prove a lemma which may 
help in understanding the relation between the geometric mean free path 
and the mean truncated free path. We deviate from the geometry considered 
in Sections ! and 2. Instead, we consider the very general billiards table 

Z = { x ~ R " I  sup Ixil<,A, I x - - a q > r f o r a l l l < ~ i < ~ N }  (18) 
I ~< i<~n  

where A > 0  and the N points a;~ R" (1 <~i~N) satisfy [ai-aJ[ > 2 r  when- 
ever i ~ j. As in Section 1, we introduce 

l z = Q  -I dxdco, where Q = d x d c o - m e a s ( Z x S  ' '-I)  (19) 
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the outgoing boundary 

Z "+ = { (x ,  0 0 ) ~ O Z x  S " -  I Io~. n.,. > 0} (20)  

(where 17,. is the inward unit normal at x e OZ), and the measure 

v=F-[oo.n. , .dS(x)  do) ,  where F = d S ( x )  d(o-meas(,S +) (21) 

Finally, the free path length is 

r(x, o~) = inf{ t > 0 ix  - too E OZ} (22) 

L e m m a  3. Let f e C * ( R  +) be such that f ( 0 ) = 0 .  Then 

F 
Iz • s,,_, f ' ( d x ,  o2)) dt2(x, co) = ~ I , . f ( r ( x , - c o ) ) d v ( x ,  co) (23) 

Proof. One has 

o2.7, .r  = 1 T]• = 0  (24) 

Multiplying this identity b y f ' (~ )  gives 

(o.V,.f(r)=f'(z), f(r)l_,-+ = 0  (25) 

Integrating on Z x S  ''-~ and applying Green's formula gives (23). II 

The following is a direct application of this lemma. 

Proof of Theorem 1, Part 1. Let j '~ CI.(R +), and let F denote 
the primitive of f which vanishes at 0; F is constant in a neighborhood of 
+ c~ and therefore uniformly bounded on R +. Formula (23) clearly applies 
if one replaces Z by Y,:; hence 

f f(r,;.~.(x, co))d/z,:...(x, oJ)=Q,: ,_- F(r,..(x,-o)))dv,:.:.(x, co) ~,,• . F , : f  + ., 

as e ~ 0 ,  since 7>7,.. I 
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Of particular interest are 

2(Z) = f,=+ r(x, -co) dv(x, co) 

Formula (23) with f (z)  = z gives 

2(Z) Q F 

1_2 Formula (23) with now f ( z )= ~-. leads to 

949 

and l(Z) =f_.• co)d~(x, co) 
(26) 

(27) 

I(Z) =2(Z)  ' _ ~,.+ �89 _o))2 dv(x, co) (28) 

In other words, the variance of r with respect to the probability measure 
v is 

Var"(r) = 21(Z) 2(Z) - 2(Z) 2 

which leads to 

1 Var"(r,:) 
I(Z) =~ 2(Z) + 22(Z-----~ (29) 

This last formula (29) explains precisely why I(Z) contains more infor- 
mation about the oscillations of r than 2(Z), as we suggested at the end of 
Section 1. It also shows that 

/ (z) > �89 (30) 

This inequality strongly suggests that one cannot infer the convergence 
l(e, T,),)~O as e ~ 0  for all T > 0  and all ), ~ [1, ),,.[ from the fact that 
2(e, )9 ~ 0, made obvious by formula (14). Indeed, since r,:. r is strongly 
oscillating as e--*0, Eq. (30) makes it very likely that the difference 
l(e, T, ) ,)- 2(e, y) is quite significant as e--* 0. 
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