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Abstract

An aerodynamic shape optimization tool for complex industrial flows is developed, based on an hybrid

process. The optimization method couples a stochastic genetic algorithm and a deterministic BFGS hill-
climbing method. For each evaluation required by the optimizer, the Navier–Stokes equations with the k–�
turbulence model are solved with a commercial CFD code on an unstructured mesh surrounding the shape

to optimize. After various validation test cases, the method is successfully applied to optimize the rear of a

simplified car shape in order to bring acceleration in the computational time of the minimization of the drag

coefficient.

� 2003 Published by Elsevier Ltd.
1. Introduction

Decreasing the fuel consumption of road vehicles, due to environmental and selling arguments
reasons, concerns car manufacturers. Consequently, the improvement of the aerodynamics of car
shapes, more precisely the reduction of their drag coefficient, becomes one of the main topics of
the automotive research centers. As it has been shown that 40% of the drag coefficient depends on
the external shape [1] and most of it on the rear of the geometry, a numerical optimization process
is proposed here in order to seek innovative low-drag car shapes. The main objective of this study
is to set up an optimization strategy for mono-disciplinary design problem using fluid mechanics
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analysis. The automatic method of optimization developed in this paper is based on the coupling
of two types of algorithms, a stochastic and a deterministic one.

The stochastic algorithm chosen is a genetic algorithm (GA). In order to reduce its prohibitive
simulation time while keeping its advantages, it has been coupled with a deterministic gradient-
based method which has the advantage to converge rapidly to a local solution, in the following
way: first, a random population of solutions is improved by means of a GA. Then, few steps of a
gradient-based method are applied to the best individual obtained by the GA. This new individual
is re-injected into the population and the GA restarts until its next plateau. The hybrid algorithm
is stopped after stabilization of the solution. The genetic process is just slightly perturbed but in
the same time, the gradient method allows a quicker descent to the optimal solution.

In industrial applications, one of the difficulties of gradient-based methods is the computation
of the sensitivity of the cost function with respect to its parameters. As a commercial CFD code
has been used to solve the incompressible Navier–Stokes and k–� equations, a finite differences
approximation of the gradient has been experimented here.

The paper is divided into three parts. First, some particularities of the optimization methods are
introduced. Then, the new hybrid method is validated through analytic optimization. Finally,
some results are presented for a first 3D shape optimization.
2. Optimization methods

2.1. Genetic algorithms

The GA are optimization methods inspired from the Darwinian theory of species improve-
ment [2,3]. A population of potential solutions of the optimization problem is generated and
evolves through the three natural principles which are selection, crossover and mutation. As this
method does not require any particular regularity of the cost function, it can be applied to any
optimization problem. Moreover as the GA�s are global methods of optimization, they seek a
global optimum; they are also able to solve multi-objective problems and are easily paralleliz-
able.

To understand more precisely the mechanism of GA�s, we consider the problem of minimizing a
cost function J , depending on the parameter x lying in a convex search space called E, for instance
an hypercube of Rp. We define a positive fitness function x 7!f ðxÞ inversely proportional to J to
traduce how good the potential solution x is. The initial population consists in a collection of n
potential solutions of the problem randomly chosen in E. We apply to this population a set of
genetic operators that create a renewed population after each generation of the process: the in-
dividuals could either survive, reproduce or die according to their fitness value. The genetic op-
erators that keep our interest in such technique are selection, crossover and mutation. As many
types of each operator exist, we only present below those we used in our algorithm.

The selection consists here in a roulette-wheel slot where each potential solution is represented
proportionally to its fitness rank in the population. A new population is created by spinning the
wheel n times, where n is the population size.

The crossover is used to create new individuals from a pair of individuals, x and x0, in
order to increase diversity among the population. In our case, it is applied with a probability
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pc ¼ 0:9 and consists in an independent barycentric mixing of each real coordinate of x
and x0.

The mutation operator is needed for a local exploration of the search space. Here, the mutation
acts with a probability pm ¼ 0:3 and is called nonuniform, because the more the GA is running,
the weaker its average exploration range becomes.

To end an iteration of the GA, the new individuals thus obtained (called offsprings) are eval-
uated and replace the old ones (called parents) with the only exception of the previous best in-
dividual that is always kept in the new population (1-elitism).

Because of their simplicity and robustness, the GA�s are more and more used in engineering
applications [3]. However, their weakness stays in their great requirement of cost function evalu-
ations that can be very time consuming, as happens for aerodynamic optimization application
where the solution of a complex partial differential equations system is necessary. Moreover, they
do not permit a fine convergence to the solution. Thus, coupling a GA with a faster local opti-
mization technique appears to be an effective way to overcome this lack of efficiency while keeping
the advantages of this method.
2.2. A new hybrid method

The introduction of hybrid methods comes from the need to tackle more and more complex
industrial applications whose resolution becomes unpractical with GA optimization technique.
There exists different strategies to improve the efficiency of stochastic optimization methods. For
instance, Vicini [4] and Poloni [5] propose a hybridization of the genetic operators by allowing a
hill-climbing process (respectively, a conjugated gradient and a Powell method) between selection
and crossover.

In this study, the hybrid method does not disturb as much the stochastic process. The hill-
climbing method is just introduced every time after a stagnation in the GA has been observed
during two consecutive generations. It consists in applying three steps of a quasi-Newton method
using the BFGS (Broyden–Fletcher–Goldfarb–Shanno) approximation of the hessian matrix.
Only the best individual of the current generation is improved in order not to disturb too much
the stochastic algorithm. This acceleration process is repeated until a stabilization of the best
solution is reached as described below.

Hybrid algorithm
Random initialization of a population
Until convergence:
GA evolution (selection, crossover and mutation)
If stagnation during three generations then three iterations of BFGS on the current best
individual
Repeat
Before showing the results obtained for aerodynamic 3D shape optimization, the method has
been validated with two analytic optimization test cases presented below.
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3. Validation of the new hybrid method

In order to determine the efficiency of the previous new hybrid technique, we perform the
minimization of two analytic functions: the Rastrigin function which exhibits many local minima
but only one global minimum, and the Griewank function defined respectively as
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Xp
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which both admit a global minimum for ðx1; . . . ; xpÞ ¼ ð0; . . . ; 0Þ.
We consider the optimization of the Rastrigin function with 20 parameters and the optimi-

zation of the Griewank function with 50 parameters. The search spaces are respectively defined by
½�5; 5�20 and ½�20; 20�50. For each problem, we compare the results obtained by a deterministic, a
genetic and a hybrid process.

Figs. 1 and 2 show the convergence history with respect to the number of cost function eval-
uations. During the deterministic phases, the evaluation of a gradient counts for p evaluations,
where p is the number of optimization parameters. The BFGS curve in Fig. 1 is only slightly
visible because this method exhibits an early convergence.

For the Rastrigin function with 20 parameters, the global minimum is approached with the
same level of accuracy after 1700 evaluations with the hybrid method compared to 400,000
evaluations for the GA. On the other hand, the BFGS method alone does not permit to find the
global optimum of the problem even with many different initial points (it is generally trapped in a
local minimum).

For the Griewank function with 50 parameters, to attain the same level of accuracy, the hybrid
method uses 400 evaluations against 200,000 for pure stochastic method.

Among many authors, De Falco et al. [6] and Gautard [7] have used GA for the optimization of
the Rastrigin and Griewank functions. Tables 1 and 2 compare their results with the hybrid
Fig. 1. Convergence results for the optimization of the Rastrigin function with 20 parameters.



Fig. 2. Convergence results for the optimization of the Griewank function with 50 parameters.

Table 1

Performance of the hybrid method compared with the SGA method [6] (success rate and mean value for 30 trials)

Rastrigin function Griewank function

GA (De Falco et al.) 0%� fav ¼ 6:8 0%� fav ¼ 0:161
Hybrid method 18%� fav ¼ 2:4 81%� fav ¼ 1:7229

Table 2

Performance of the hybrid method compared with the GA method [7] (best result after 2000 function evaluations)

Rastrigin function Griewank function

GA (Gautard) x� ¼ ð�6� 10�3;�3� 10�4Þ x� ¼ ð�1:5� 10�2; 4� 10�4Þ
f � ¼ 5� 10�3 F � ¼ 1:17� 10�4

Hybrid method x� ¼ ð9� 10�5;�5:4� 10�5Þ x� ¼ ð�2:3� 10�6;�3:6� 10�4Þ
f � ¼ 1:8� 10�6 f � ¼ 3:6� 10�8
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method. De Falco et al. consider the optimization of Rastrigin and Griewank functions with
respectively 20 and 10 parameters. The success criterion is to obtain a function value lower than
10�2 after less than 40,000 function evaluations. In Table 2, the best result of Gautard for
Rastrigin and Griewank functions with 2 parameters after 2000 function evaluations is compared
with the best result of the hybrid method.

According to the previous encouraging results of the hybrid method on analytic cases, it has
then been applied on an aerodynamic 3D shape optimization.
4. Aerodynamic shape optimization

4.1. Description of the optimization problem

We consider a vehicle-like body in ground proximity (see Fig. 3). The simplified car shape can
be decomposed in a forebody, a midsection and an afterbody shape. The afterbody shape is



Fig. 3. 3D car shape where the back-light angle called a, the boat-tail angle called b and the ramp angle called c are

adjustable.
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defined by the three independent angles (the back-light angle a, the boat-tail angle b and the ramp
angle c). The afterbody length is equal to 15% of the total body length and the height of the body
is equal to 40% of the body length. The problem is to minimize, by varying the three afterbody
angles, the drag coefficient of the body called Cx and defined by
Cx ¼
2Fx
qV 2

1S
where q is the mass density, S the front surface, V1 the freestream velocity and Fx the longitudinal
component of the aerodynamic force defined by
~FF ¼
Z Z Z

Shape

Prel~nndS þ 2l
Z Z Z

Shape

D~mmdS
where Prel is the pressure around the shape relatively to the atmospheric pressure, ~nn the normal
vector,~mm the unit projection of the velocity vector to the surface, l the dynamic viscosity and D the
wall shear stress tensor.

In fact, most of the drag on a vehicle-like body comes from the pressure term and is directly due
to flow separation from the body surface. While it is often observed that the drag coefficient is not
sensitive to the forebody shape (with separation-free forebodies), flow separation, i.e. vortex
shedding of longitudinal edges on the afterbody, is the major source of aerodynamic drag for
vehicle-like body (see Fig. 5). Thus, the variation of the back-light angle, will modify the complex
and highly nonlinear aerodynamic interaction among the upper, side and lower surfaces, leading
different afterbody vortex structures creation impacting directly on the drag coefficient value.

The drag coefficient of the vehicle-like body is evaluated by numerical computations performed
with a commercial 3D finite volume based solver, using the Navier–Stokes equations with k–�
turbulence model. The jamming surface is approximately equal to 1%. The numerical wind tunnel
length is equal to nine vehicle lengths, two lengths upstream and six downstream. Symmetric
boundary conditions are enforced at the symmetry plane. The mesh around the shape is un-
structured and tetrahedral with about 350,000 cells. A log-law boundary condition is employed on
the car shape and on the wind tunnel ground.

For all the computations, the freestream velocity is equal to 40 m/s, which corresponds to a
Reynolds number based on the body length of 3.5· 106.



Fig. 5. Schematic sketch of a vehicle-like body rear end flow (issued from [10]). Left: strong longitudinal vortices

corresponding to a high drag. Right: weak longitudinal vortices corresponding to a low drag.

Fig. 4. Convergence results for 3D shape optimization with 3 parameters.
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The convergence is assumed after stabilization of the drag and lift aerodynamic coefficients.
Concerning the sensitivity evaluations, a specific study of the numerical stability and accuracy
permits to determine the discretization step for the finite differences computations.
4.2. Results

Before showing the results, the optimization based on the hybrid method is described. The GA
is running during five generations but it evolves only at the third one. Then the deterministic
method is applied to the current best individual. The GA restarts just for three generations and
the deterministic process is used again. Fig. 4 presents the results obtained by three methods: the
GA, the hybrid and the BFGS methods. Though the BFGS method has been initialized with the
best indivudual obtained after the first generation of the GA, the improvement rate of the drag
coefficient that has been achieved is smaller than for the other methods.The hybrid method
permits to minimize the drag coefficient more efficiently than the GA in less than 70% of its
computational time.

To interpret the mechanisms modifying the drag coefficient, two different view points, either
aerodynamic or ‘‘geometric’’, can be taken [8]: on an aerodynamic view point, it has been ob-
served by Morelli [9] and Hucho [1] that minimizing the trailing vortices in the wake will reduce
drag. On a geometric view point, it seems to be interesting to minimize the rear base to reduce the
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drag. Indeed, it is worth noticing that the main changes on the drag when changing the shape deal
with the pressure force. Moreover, as only 30% of the drag coefficient depends on the front of the
shape, the slanted surfaces and vertical base surface of the rear end will contribute strongly to the
pressure drag.

Unfortunately, both theories cannot be considered separately. Indeed, a little rear base exists
when the three rear angles have a high value but the latter induce important recirculation on the
back-light, boat-tail, ramp faces which, as we have seen before, is a direct production of drag.
Thus, a 3D Navier–Stokes analysis is applied in order to explain the flow associated to the op-
timized shape.

To illustrate the aerodynamic optimization, we present two computational results in the
symmetry plane and in the middle transverse plane for two different shape configurations with an
decreasing drag: ða;b; cÞ equal to ð14:5; 7:6; 14:3Þ and ða; b; cÞ equal to ð23:1; 13:6; 23:3Þ. In Fig. 6,
the wake behind the body is characterized by a large recirculation zone. At the symmetry plane
two vortices are clearly visible. The separation bubble has a length slightly greater than a third of
the vehicle length. The large flow separation on the rear base permits to predict a large contri-
bution of this part to the pressure drag. The second shape depicted in Fig. 7 presents a 0.023
weaker drag. The rear base surface is indeed smaller than before and the effect of the back-light,
ramp and boat-tail angles tends to minimize the length of the separation zone as well as the rear
vortices intensity. The flow behind this shape is characterized by two well balanced upper and
Fig. 6. 3D vehicle-like body wake for ða; b; cÞ ¼ ð14:5; 7:6; 14:3Þ. Top: contour of total pressure on the symmetry plane

(left) and on the middle transverse plane (right). Bottom: path line on the symmetry plane coloured by longitudinal

velocity (left) and on the rear coloured by velocity magnitude (right).



Fig. 7. 3D vehicle-like body wake for ða; b; cÞ ¼ ð23:1; 13:6; 23:3Þ. Top: contour of total pressure on the symmetry plane

(left) and on the middle transverse plane (right). Bottom: path line on the symmetry plane coloured by longitudinal

velocity (left) and on the rear coloured by velocity magnitude (right).
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lower recirculation vortices in the separation bubble and the longitudinal vortices downstream are
minimized. This flow is a typical low drag vehicle flow.

All the aerodynamic computations are made on Compaq ES40 (processor EV6.7, 500 MHz).
each evaluation takes about 15,000 s CPU.
5. Conclusion

This study presents a new approach for global aerodynamic optimization problems. The GAs
have been extensively used for that case but are very time consuming in a real industrial context.
The coupling of a GA with a deterministic method has been introduced in this article in order to
bring acceleration in the computational time and thus allow to handle complex 3D optimization
problems.

The new hybrid method has been first validated on academic test cases. Then, an application in
the automotive aerodynamic context has been investigated on which it has shown satisfactory
results in terms of speed and efficiency compared to other existing methods. A 3D Navier–Stokes
analysis shows that the flow around the vehicle-like shape optimized by the hybrid method is
characteristic of a low drag vehicle flow. The next problem to be tackled will consist in the op-
timization of a part of a real vehicle (outside mirror, front bumper, a-pillar, underbody) for which
the degrees of freedom amount at least to 20.
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The hybrid method can still be improved using partial automatic differentiation for the gradient
evaluations rather than a finite differences approximation whose computational time depends on
the number of optimization parameters, that could rapidly become an important drawback.
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