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Bacterial growth (E. coli here)

From E. J. Stewart, R. Madden, G. Paul, F. Taddei, Plos Biol, 2005
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What triggers bacterial division?

Different ways of investigation:

I details the intracellular mechanisms
many studies (e.g. E Harry, L Monahan, L Thompson, Int.
Rev. Cytol., 2006.)

I Observe and understand the population dynamics

Question: Can we deduce laws from our observations?
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Steps towards such ”laws”

1. Make the most of direct observations
Methods: statistical analysis, density estimation...

2. Make assumptions or simplifications

3. Build model(s)
Methods: probabilistic processes / ODE or PDE ...

4. Calibrate the model(s): estimation of unobserved parameters
Methods: inverse problems, statistics

5. Back to the data to (in)validate the model(s)
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First step: take the most of our data
(before writing down a math model)
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1. Direct observations

2 types of data:

I initial video: all descendants till a certain time, several
microcolonies (Stewart et al, Plos Biol, 2005)

I 1 daughter cell kept at each generation, till a certain time,
several lineages (Wang, Robert et al, Current Biology, 2010)

The way we observe the data influence the math modeling.
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Direct observations: individual growth
commonly accepted after much debate: exponential growth:

dx

dt
= κx .

(Stewart et al, Plos Biol, 2005)
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1. Direct observation: individual growth

variability of the exponential rate κ among cells

Figure : growth rate distrib. (min−1)
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1. Direct observations: population growth
Growth of the population: exponential with Malthus parameter λ
(almost) equal to the (average) individual growth rate κ.
Doubling time (= Log(2)/κ) of approx. 20 min.

Figure : Monod’s 1942 thesis on E. Coli culture cells.
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1. Direct observation: division

Distribution of the ratio (size of daughter/size of mother)
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1. Direct observation: distributions

Blue: 1 branch/genealogical data Green: whole tree data till a
certain time
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Second step: making assumptions
(before writing down a math model)
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2. Assumptions: some simplification

based on direct observations:

I daughter cell size= half of mother cell size

I growth rate = constant among cells (neglect variability)

dx

dt
= κx

I infinite nutrient and space

I first cell selected at random
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2. Assumptions: modeling

I no memory

I a particle of size x may divide with a division rate B
depending on age
OR

I a particle of size x may divide with a division rate B
depending on size
OR

I a particle of size x may divide with a division rate B
depending on size AND age AND/OR something else...
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Third step: models
(that we will analyse and calibrate)
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3. Models

2 main ways of translating mathematically the previous
assumptions:

1. probability: model each cell

2. PDE: model the population of cells, considered either as large
or in expectancy
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3. Models: Branching processes modeling
see Meyn & Tweedie, 1993 and M.H.A. Davis, 1993

Piecewise Deterministic Markov Processes (PDMP):

I start: a singe cell of size x0.

I cell’s growth: deterministic.

I at each time, it has an instantaneous probabillity rate B to
divide (jump); B depends on size x or age a of the cell.

I At division, two offspring of age 0 and initial size x1/2, where
x1 is the size of the mother at division.

I The two offspring start independent growth (Markov property)
according to the (deterministic) rate κ and divide according to
the (probabilistic) rate B.
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3. The probabilistic model
see Meyn & Tweedie, 1993 and M.H.A. Davis, 1993

Genealogical tree: infinite random marked tree

U =
∞⋃
n=0

{0, 1}n with {0, 1}0 := ∅.

To each node u ∈ U , we associate a cell with size at birth ξu and
lifetime ζu.
If u− denotes the parent of u then

ξu =
ξu−

2
exp

(
κζu−

)
.
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3. Models: From probability back to PDE...

Equivalent view: Piecewise Deterministic Markov Process (PDMP):
To each cell labeled by u ∈ U , we associate a birth time bu.
X (t) =

(
X1(t),X2(t), . . .

)
process of the sizes of the population at

time t, or A(t) =
(
A1(t),A2(t), . . .

)
of ages at time t.

X (t) has values in the space of finite point measures on R+ \{0}
via

MX (t) =

]X (t)∑
i=1

δXi (t), MA(t) =

]A(t)∑
i=1

δAi (t)

Branch tree case: always 1 and only 1 Dirac mass δXi (t), with i =
number of divisions till time t.



20

3. Age model: renewal equation

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Ai (t)

)]
.

In a weak sense:

∂tn(t, a) + ∂an(t, a) = −B(a)n(t, a),

n(t, 0) = 2

∞∫
0

B(a)n(t, a)da OR n(t, 0) =

∞∫
0

B(a)n(t, a)da

So the mean empirical distribution of A(t) satisfies the
deterministic renewal equation.
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3. Size model: growth-fragmentation equation

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one

formula (Bansaye et al, 2009, Cloez, 2011, ...)

We have (in a weak sense) IF we keep the 2 daughters at each
generation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 4B(2x)n(t, 2x).

So the mean empirical distribution of X (t) satisfies the
deterministic growth-fragmentation / size-structured / cell division
equation (with binary fission and equal mitosis).
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3. Size model: growth-fragmentation equation

Set, for (regular compactly supported) f

〈n(t, ·), f 〉 := E
[ ∞∑
i=1

f
(
Xi (t)

)]
.

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one

formula (Bansaye et al, 2009, Cloez, 2011, ...)

We have (in a weak sense) IF we keep 1 daughter at each
generation:

∂tn(t, x) + ∂x
(
κx n(t, x)

)
+ B(x)n(t, x) = 2B(2x)n(t, 2x).

So the mean empirical distribution of X (t) satisfies a deterministic
conservative growth-fragmentation equation (also encountered e.g.
for TCP/IP protocol)
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3. Age and Size model: PDE
n(t, a, x) density of cells of size x and age a.
PDE obtained from the PDMP (as previously) or by a mass
balance:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

with n(0, a, x) = n(0)(a, x), x ≥ 0.
IF B = B(x) : back to growth-fragmentation equation
IF B = B(a) : back to renewal equation
IF we keep only 1 daughter at each generation: the boundary
condition becomes:

n(t, a = 0, x) = 2

∞∫
0

B(a, 2x)n(t, a, 2x)da
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Fourth step: model calibration
(which first needs analysis)
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4. Model calibration

Only unobserved parameter: the division rate B.
Estimation procedure:

I mathematical analysis: asymptotic regime (PDMP or PDE)

I estimation methods

I comparison of calibrated model results and data
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Long-time asymptotics: PDE - Age model

historically the first structured-population model to be studied
(Kermack and Mc Kendrick, 1927 ; Metz and Diekmann, 1981)
n(t, a)→ eλtN(a), with λ and N uniquely determined by

∂

∂a
N + λN = −B(a)N, N(0) = 2

∞∫
0

B(a)N(a)da.

Explicit solution: N(a) = N(0)e
−λa−

a∫
0

B(s)ds
,

λ uniquely determined by the boundary condition:
either λ = 0 (1 branch case) or

2

∞∫
0

B(a)e
−λa−

s∫
0

B(s)ds
da = 1
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Long-time asymptotics: PDE - Size model
Looking for solutions n(t, x) = eλtN(x)

Under proper assumptions ∃! (λ > 0,N ≥ 0) solution of
∂
∂x (κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx ,

N(x) ≥ 0,
∫∞
0 N(x)dx = 1.

(1)

Here it stands that κ = λ and by the ”General Relative Entropy”
method∫

R+

∣∣n(t, x)e−λt − 〈n(0), x〉N(x)
∣∣xdx → 0 as t →∞

Reference book: B. Perthame, Transport Equations in Biology, 2007
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Fourth step: estimation procedure
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4. Estimation methods

3 methods:

I use the ”all cells” distributions: ”indirect/inverse” approach,
based on N(x) or N(a)

I use the ”at division” distributions: ”direct” approach:
PDMP or B(x)N(x)/

∫
BNdx

I use both ! ”direct” approach: measure of both
B(x)N(x)/

∫
BNdx , and N(x)

With E. coli: choose any of the 3 schemes and select the most
accurate

Preliminaries: How to estimate these densities?
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4. First method, preliminaries: estimation of N(x)
1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.
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4.1. First method: an indirect approach
1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.
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4.1. First method: an indirect approach

Any cell at any time put together in this asymptotic distribution

cf. video at the beginning: around 30.000 to 60.000 observations
(Blue: 1 branch, Green: whole tree)
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4.1. Inverse Problem for the age model

(see also M. Gyllenberg, A. Osipov and L. Pivrinta, 2002 & 2003)

From a (noisy) measure of N(a) and λ, we look for B(a).
Since we have the explicit relation

N(a) = N(0)e−λa−
∫ a
0 B(s)ds ,

we get

B(a) = −λ− ∂aN(a)

N(a)
.

From a noisy version of N: regularization is needed.
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4.1. Inverse Problem for the size model

Inverse Problem: estimating the division rate B(x)

From: measurements of (κ,N) with

∂

∂x
(κxN(x)) + λN(x) = −B(x)N(x) + 4B(2x)N(2x)dx .

Choice of a Hilbert space: L2(R+, x
pdx)

(Engl, Hanke, Neubauer, Regularization of Inverse Problems, 1995)

Similar to the age problem: the equation implies a derivative for N
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4.1. Inverse Problem for the Size Model

Estimate B through

L(N) = G (BN), with

G (f )(x) = 4f (2x)− f (x), (2)

L(N)(x) = κ∂x
(
xN(x)

)
+ κN(x), (3)

2 main steps:

I Solve G (f ) = L for f , L in suitable weighted L2 spaces:
PDE part. the problem N → f = BN is now linear.

I Find an estimate for L(N) in this L2 space:
PDE or statistical part
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4.1. Inverse Problem for the Size Model
Step 1: solve a dilation equation

Defining
G : f → G (f ) = 4f (2x)− f (x)

We want to inverse G in a weighted L2 space.: knowing L ∈ L2,
find f ∈ L2 solution of

L(x) = 4f (2x)− f (x)

Key point: possibly several solutions
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Numerical Results - Size Structured

Three tested division rates B
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Numerical Results - Size Structured

Three related asymptotic distributions N
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Numerical Results - - Size Structured

Results with no noise - constant B
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Numerical Results - - Size Structured

Results with no noise - step B
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Numerical Results - - Size Structured

Results with no noise - varying B
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Numerical Results - - Size Structured

Results with noise ε = 0.01 - Error with respect to the
regularization parameter α
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Numerical Results - - Size Structured

Results with noise ε = 0.01 - BN
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Numerical Results - - Size Structured

Results with noise ε = 0.01 - B
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Numerical Results - - Size Structured

Optimal α with respect to ε, compared to
√
ε and the optimal error
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4.2. Second method: direct and full observation

Statistical reconstruction
(MD, M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2014)
Observation scheme {

(ξu, ζu), u ∈ Un
}
,

with Un ⊂ U a set of n nodes having the property

If u ∈ Un then u− ∈ Un.

Asymptotics taken as n→∞.

We use the link between f (t) the density of the lifetime and the
division rate B.
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Step 5: Finally back to the data...

Will we be able to select or reject our models ?
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5. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

I calibrate it (previously seen methods and data)

I simulate the age-size PDE model:

∂

∂t
n +

∂

∂a
n +

∂

∂x

(
κxn
)

= −B(a, x)n(t, a, x),

n(t, a = 0, x) = 4

∞∫
0

B(a, 2x)n(t, a, 2x)da

till its asymptotic steady behaviour n(t, a, x) = eλtN(a, x)

I compare quantitatively data and simulations

I conclude !

If possible...
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5. Back to the data
experimental age/size data - whole tree till a certain time

Figure : Age Size Distribution for all cells - whole tree data
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5. Back to the data
experimental age/size data - 1 branch data

Figure : Age Size Distribution for all cells - tree branches data
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Testing the Age Model
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5. Back to the data: testing the Age Model
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

Figure : Age Size simulation for the Age Model - whole tree data
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5. Back to the data: testing the Age Model
with a corrected growth rate

Figure : Age Size simulation for the Age Model - whole tree data
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5. Back to the data: testing the Age Model

Figure : Age Size simulation for the Age Model - branch tree data
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5. Back to the data: testing the Age Model
with a corrected growth rate

Figure : Age Size simulation for the Age Model - branch tree data
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5. Age Model: conclusion

I As it is, this model is rejected

I Theoretical reason: exponential growth + age-dependent
division rate lead to accumulation towards 0.

I Refer to theoretical results for the asymptotic regime: we need
B(x)
x ∈ L10 (M.D., P. Gabriel, 2010)

I This theory is not sufficient: corrected growth rate
dependence on these corrections is too important
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Testing the Size Model
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5. Back to the data: testing the Size Model

Figure : Reconstruction of the division rate - green: whole tree, blue:
branches data
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5. Size Model: reconstruction for B
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5. Back to the data: testing the Size Model

Figure : Age Size simulation for the Size Model - whole tree data
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5. Back to the data: testing the Size Model

Figure : Age Size experimental data - whole tree data
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5. Back to the data: testing the Size Model

Figure : Age Size simulation for the Size Model - branch tree data
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5. Back to the data: testing the Size Model

Figure : Age Size experimental data - branch tree data
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Extensions of the model

Variability:
∂

∂t
n(t, x , v) +

∂

∂x

(
vxn(t, x , v)

)
=

−B(x)n(t, x , v) + 2

∞∫
x

∞∫
0

B(y)k(y , x)ρ(v ′, v)n(t, y , v ′)dy , dv ′

with
∫∞
0 ρ(v ′, v)dv = 1

Age + variability:

∂
∂t n(t, a, x , v) + ∂

∂x

(
vxn(t, a, x , v)

)
= −B(a, x)n(t, a, x , v),

n(t, a = 0, x , v) = 2
∞∫
x

∞∫
0

B(a, y)k(y , x)ρ(v ′, v)n(t, a, y , v ′)dydv ′da

(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg,
1983 - Mischler, Perthame, Ryzhik, 2002,...)
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5. Incorporating variability

Figure : Effect on the distribution of growth rate variability
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5. Incorporating variability

Figure : Effect on the distribution of variability in daughter sizes
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5. What about an Age-Size Model ?
To test it, we would need an extra variable:

Figure : Age distribution: data and fit by the age model
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5. What about an Age-Size Model ?
To test it, we would need an extra variable:

Figure : Size distribution: data and fit by the age model
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Conclusion

I Method may be adapted to other cases and models

I Strong coherence and complementarity between PDE and
statistical approaches, and still many open mathematical
problems

I a basis for new biological questions: coordination between
growth and division, influence of variability...

And many huge thanks to...

Pierre Gabriel, Thibault Bourgeron, Miguel Escobedo, Magali
Tournus, Benoit Perthame, Jorge Zubelli, Pedro Maia, Marc
Hoffmann, Patricia Reynaud-Bouret, Lydia Robert, Vincent

Rivoirard, Nathalie Krell, Adéläıde Olivier

to be continued!


