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Bacterial growth (E. coli here)

From E. J. Stewart, R. Madden, G. Paul, F. Taddei, Plos Biol, 2005




What triggers bacterial division?
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Different ways of investigation:

» details the intracellular mechanisms

many studies (e.g. E Harry, L Monahan, L Thompson, Int.
Rev. Cytol., 2006.)

» Observe and understand the population dynamics
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Different ways of investigation:

» details the intracellular mechanisms
many studies (e.g. E Harry, L Monahan, L Thompson, Int.
Rev. Cytol., 2006.)

» Observe and understand the population dynamics

Question: Can we deduce laws from our observations?
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Steps towards such " laws”

1. Make the most of direct observations
Methods: statistical analysis, density estimation...

2. Make assumptions or simplifications

3. Build model(s)
Methods: probabilistic processes / ODE or PDE ...

4. Calibrate the model(s): estimation of unobserved parameters
Methods: inverse problems, statistics

5. Back to the data to (in)validate the model(s)



First step: take the most of our data
(before writing down a math model)



1. Direct observations

2 types of data:

» initial video: all descendants till a certain time, several
microcolonies (Stewart et al, Plos Biol, 2005)

» 1 daughter cell kept at each generation, till a certain time,
several lineages (Wang, Robert et al, Current Biology, 2010)

The way we observe the data influence the math modeling.



Direct observations: individual growth
commonly accepted after much debate: exponential growth:

dx
— = RKX.
dt
(Stewart et al, Plos Biol, 2005)
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1. Direct observation: individual growth

variability of the exponential rate kK among cells
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Figure : growth rate distrib. (min—1)



1. Direct observations: population growth

Growth of the population: exponential with Malthus parameter A
(almost) equal to the (average) individual growth rate .
Doubling time (= Log(2)/k) of approx. 20 min.
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Fic. 10. — Phase exponentielle de la croissance d’une
culture de B. coli en milieu synthétique, avec 300 mgr

par L. de glucose. Coordonnées semi-logarithmiques.

Fic. 11. — Phase exponentielle de la croissance d'une
culture de B. subtilis en milieu synthétique, avee 500 mgr.
par |. de saccharose. Coordonnées semi-logarithmiques.

Figure : Monod'’s 1942 thesis on E. Coli culture cells.



1. Direct observation: division

Distribution of the ratio (size of daughter/size of mother)
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1. Direct observation: distributions
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Blue: 1 branch/genealogical data Green: whole tree data till a
certain time



Second step: making assumptions
(before writing down a math model)



2. Assumptions: some simplification

based on direct observations:
» daughter cell size= half of mother cell size

» growth rate = constant among cells (neglect variability)

dx
— = KX
dt

» infinite nutrient and space

» first cell selected at random



2. Assumptions: modeling

> Nno memory

v

a particle of size x may divide with a division rate B
depending on age

OR

a particle of size x may divide with a division rate B
depending on size

OR

a particle of size x may divide with a division rate B
depending on size AND age AND/OR something else...

v

v



Third step: models
(that we will analyse and calibrate)



3. Models

2 main ways of translating mathematically the previous
assumptions:
1. probability: model each cell

2. PDE: model the population of cells, considered either as large
or in expectancy



3. Models: Branching processes modeling
see Meyn & Tweedie, 1993 and M.H.A. Davis, 1993

Piecewise Deterministic Markov Processes (PDMP):

>

>

>

start: a singe cell of size xg.
cell's growth: deterministic.

at each time, it has an instantaneous probabillity rate B to
divide (jump); B depends on size x or age a of the cell.

At division, two offspring of age 0 and initial size x;/2, where
X1 is the size of the mother at division.

The two offspring start independent growth (Markov property)
according to the (deterministic) rate x and divide according to
the (probabilistic) rate B.



3. The probabilistic model
see Meyn & Tweedie, 1993 and M.H.A. Davis, 1993

Genealogical tree: infinite random marked tree
U=|J{0,1}" with {0,1}°:=0.
n=0

To each node u € U, we associate a cell with size at birth &, and
lifetime (.
If u~ denotes the parent of u then

&
€= 0 exp (WG, )-




3. Models: From probability back to PDE...

Equivalent view: Piecewise Deterministic Markov Process (PDMP):
To each cell labeled by u € U, we associate a birth time b,,.
X(t) = (X1(t), X2(t), ... ) process of the sizes of the population at
time t, or A(t) = (A1(t), Az(t),...) of ages at time t.
X(t) has values in the space of finite point measures on Ry \{0}
via

1X(t) #A(t)

MX(t Z 5X (t)» At) — Z 5A

Branch tree case: always 1 and only 1 Dirac mass dx;(¢), with i =
number of divisions till time t.



3. Age model: renewal equation

Set, for (regular compactly supported) f
(n(t,). F):=E[D_f(Air)].
i=1

In a weak sense:

Orn(t,a) + 0,n(t, a) = —B(a)n(t, a),
n(t,O):2/B(a)n(t,a)da OR n(t,O):/B(a)n(t, 2)da
0 0

So the mean empirical distribution of A(t) satisfies the
deterministic renewal equation.

20



3. Size model: growth-fragmentation equation

Set, for (regular compactly supported) f

(n(t,), f) :=E[>_F(Xi(1))].
=1

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one
formula (Bansaye et al, 2009, Cloez, 2011, ...)

We have (in a weak sense) IF we keep the 2 daughters at each
generation:

den(t, x) + Ox (kx n(t, x)) + B(x)n(t,x) = 4B(2x)n(t, 2x).

So the mean empirical distribution of X(t) satisfies the
deterministic growth-fragmentation / size-structured / cell division
equation (with binary fission and equal mitosis).

21



3. Size model: growth-fragmentation equation

Set, for (regular compactly supported) f

(n(t,), f) :=E[>_F(Xi(1))].
=1

Proof: tagged fragment approach (Bertoin, Haas, ...), many-to-one
formula (Bansaye et al, 2009, Cloez, 2011, ...)

We have (in a weak sense) IF we keep 1 daughter at each
generation:

den(t, x) + Ox (kx n(t, x)) + B(x)n(t,x) = 2B(2x)n(t, 2x).

So the mean empirical distribution of X(t) satisfies a deterministic
conservative growth-fragmentation equation (also encountered e.g.
for TCP/IP protocol)

22



3. Age and Size model: PDE

n(t, a, x) density of cells of size x and age a.
PDE obtained from the PDMP (as previously) or by a mass

balance:
0 d 0
5" T 5"t &(nxn) = —B(a, x)n(t, a, x),
n(t,a=0,x) = 4/ B(a,2x)n(t,a,2x)da
0

with n(0, a, x) = n(®(a, x), x > 0.
IF B = B(x) : back to growth-fragmentation equation
IF B = B(a) : back to renewal equation

IF we keep only 1 daughter at each generation: the boundary
condition becomes:

n(t,a=0,x) = 2/8(3, 2x)n(t, a,2x)da
0

23



Fourth step: model calibration
(which first needs analysis)

24



4. Model calibration

Only unobserved parameter: the division rate B.
Estimation procedure:

» mathematical analysis: asymptotic regime (PDMP or PDE)
> estimation methods

» comparison of calibrated model results and data

25



Long-time asymptotics: PDE - Age model

historically the first structured-population model to be studied
(Kermack and Mc Kendrick, 1927 ; Metz and Diekmann, 1981)
n(t,a) — e N(a), with A\ and N uniquely determined by

%N+)\N_ —B(a)N,  N(0) =2/B(a)N(a)da-
0

—)\a—f B(s)ds
Explicit solution: N(a) = N(0)e 0

A uniquely determined by the boundary condltlon
either A = 0 (1 branch case) or

7 —)\a—sB(s)ds
2/ B(a)e Of da=1
0

26



Long-time asymptotics: PDE - Size model

Looking for solutions n(t, x) = e N(x)

Under proper assumptions 3! (A > 0, N > 0) solution of

%(KXN(X)) + AN(x) = —B(x)N(x) + 4B(2x)N(2x)dx,

(1)
N(x) >0, Jo© N(x)dx = 1.

Here it stands that x = A and by the " General Relative Entropy”
method

/ ‘n(t,x)e"\t — (n(o),x)N(x)|xdx —0 as t — o0
Ry

Reference book: B. Perthame, Transport Equations in Biology, 2007

27



Fourth step: estimation procedure

28



Fourth step: estimation procedure

29



4. Estimation methods

3 methods:

» use the "all cells” distributions: "indirect/inverse” approach,
based on N(x) or N(a)

> use the "at division” distributions: "direct” approach:
PDMP or B(x)N(x)/ | BNdx

» use both ! "direct” approach: measure of both
B(x)N(x)/ | BNdx, and N(x)

With E. coli: choose any of the 3 schemes and select the most
accurate

Preliminaries: How to estimate these densities?

30



4. First method, preliminaries: estimation of N(x)

1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

0 ! 2 3

T T T T T T
£ coli WP2-HCR™
~2hr

Linear Growth, CV=16%
= = = Exponential Growth, CV=20%

FREQUENCY

CELL VOLUME I[N UNITS OF Vh, Linear Growth

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.



4.1. First method: an indirect approach

1st historical observations, the simplest and often the only possible
ones, and confirm the asymptotic behavior:

0 ! 2 3
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£ coli WP2-HCR™
~2hr

Linear Growth, CV=16%
= = = Exponential Growth, CV=20%

FREQUENCY

CELL VOLUME I[N UNITS OF Vh, Linear Growth

Observation (from Kubitschek, 1969): DOUBLING TIME and
STEADY SIZE DISTRIBUTION.



4.1. First method: an indirect approach
Any cell at any time put together in this asymptotic distribution
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cf. video at the beginning: around 30.000 to 60.000 observations
(Blue: 1 branch, Green: whole tree)



4.1. Inverse Problem for the age model

(see also M. Gyllenberg, A. Osipov and L. Pivrinta, 2002 & 2003)

From a (noisy) measure of N(a) and A, we look for B(a).
Since we have the explicit relation

N(a) = N(O)e—ka—foa B(s)ds’

we get
~ 0aN(a)
N(a) ~

From a noisy version of N: regularization is needed.

B(a) = -\

34



4.1. Inverse Problem for the size model

Inverse Problem: estimating the division rate B(x)

From: measurements of (x, N) with

aax(ﬁXN(X)) + AN(x) = —B(x)N(x) + 4B(2x)N(2x)dx.

Choice of a Hilbert space: L?(R ., xPdx)
(Engl, Hanke, Neubauer, Regularization of Inverse Problems, 1995)

Similar to the age problem: the equation implies a derivative for N

35



4.1. Inverse Problem for the Size Model

Estimate B through

L(N) = G(BN),  with

G(F)(x) = 4f(2x) = f(x), ()
L(N)(x) = 0x(xN(x)) + £N(x), (3)

2 main steps:

» Solve G(f) = L for f, L in suitable weighted L? spaces:
PDE part. the problem N — f = BN is now linear.

» Find an estimate for L(N) in this L2 space:
PDE or statistical part

36



4.1. Inverse Problem for the Size Model
Step 1: solve a dilation equation

Defining
G:f— G(f)=4f(2x) — f(x)

We want to inverse G in a weighted L? space.: knowing L € L2,
find f € L? solution of

L(x) = 4f(2x) — f(x)

Key point: possibly several solutions

37



Numerical Results - Size Structured

B(x)

55

451

B=1
- B=1 for x=1.5, then increases linearly to B=5
B=1

+exp(-8(x-2)%)

Three tested division rates B
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Numerical Results - Size Structured
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Numerical Results - - Size Structured
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Numerical Results - - Size Structured
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Numerical Results - - Size Structured
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Numerical Results - - Size Structured

0.5 T
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regularization parameter «
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Numerical Results - - Size Structured

£=0.01, B=exp(-8(x-2)%)+1

12 T T T T T T
---- Quasi-Reversibility method, «:=0.2, error 5=0.1
— - Filtering approach, ¢.=0.11, Error £=0.09
1r — Filter (ct=0.1)+ Quasi-Reversibility (c.=0.2), Error =0.08 [T

LT
."'l.

Results with noise € = 0.01 - BN

44



Numerical Results - - Size Structured
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Numerical Results - - Size Structured

filter

—=—min over all « of obtained error
—— 12

—+—« giving the minimum error

e

Optimal « with respect to €, compared to /¢ and the optimal error
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4.2. Second method: direct and full observation

Statistical reconstruction
(MD, M. Hoffmann, N. Krell, L. Robert, Bernoulli, 2014)
Observation scheme

{(fua Cu)a uc un}7

with U, C U a set of n nodes having the property

If u e U, then u= € U,.

Asymptotics taken as n — oc.

We use the link between f(t) the density of the lifetime and the
division rate B.

47



Step 5: Finally back to the data...

Will we be able to select or reject our models ?

48



5. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

» calibrate it (previously seen methods and data)

» simulate the PDE model:
0 0 0
5" + 25" + a(nxn) = —B(a, x)n(t, a, x),
n(t,a=0,x) = 4/ B(a,2x)n(t, a,2x)da
0

till its asymptotic steady behaviour n(t,a, x) = e N(a, x)
» compare quantitatively data and simulations

» conclude !

49



5. Back to the data
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)

To test a model:

» calibrate it (previously seen methods and data)

» simulate the PDE model:
0 0 0
5" + 25" + a(nxn) = —B(a, x)n(t, a, x),
n(t,a=0,x) = 4/ B(a,2x)n(t, a,2x)da
0

till its asymptotic steady behaviour n(t,a, x) = e N(a, x)
» compare quantitatively data and simulations

» conclude ! If possible...

49



5. Back to the data
experimental age/size data - whole tree till a certain time
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Figure : Age Size Distribution for all cells - whole tree data
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5. Back to the data
experimental age/size data - 1 branch data
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Figure : Age Size Distribution for all cells - tree branches data
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Testing the Age Model

52
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5. Back to the data: testing the Age Model
(M.D., M. Hoffmann, N. Krell, L. Robert, BMC Biology, 2014)
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Figure : Age Size simulation for the Age Model - whole tree data
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5. Back to the data: testing the Age Model
with a corrected growth rate
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Figure : Age Size simulation for the Age Model - whole tree data
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5. Back to the data: testing the Age Model

(0] 10 20 30 40
Age

Figure : Age Size simulation for the Age Model - branch tree data
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5. Back to the data: testing the Age Model
with a corrected growth rate

0 10 20 30 40
Age (min)

Figure : Age Size simulation for the Age Model - branch tree data
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5. Age Model: conclusion

» As it is, this model is rejected

» Theoretical reason: exponential growth + age-dependent
division rate lead to accumulation towards 0.

» Refer to theoretical results for the asymptotic regime: we need
B ¢ 11 (M.D., P. Gabriel, 2010)

X
» This theory is not sufficient: corrected growth rate
dependence on these corrections is too important

57



Testing the Size Model
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5. Back to the data: testing the Size Model

0.5

0.4y

-
w

Division rate
o
N

4
-_—

) > 4
Size (um)

Figure : Reconstruction of the division rate - green:

branches data

whole tree, blue:
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5. Size Model: reconstruction for B
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5. Back to the data: testing the Size Model
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Figure : Age Size simulation for the Size Model - whole tree data
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5. Back to the data: testing the Size Model
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Figure : Age Size experimental data - whole tree data
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5. Back to the data: testing the Size Model
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Figure : Age Size simulation for the Size Model - branch tree data
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5. Back to the data: testing the Size Model

0.035
0.03

0.025

ks 0.02

w
0.015
0.01
0.005

0]
0] 10 20 30 40
Age

Figure : Age Size experimental data - branch tree data
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Extensions of the model

Variability:

3} 0
an(t, x,v) + vxn(t,x,v)) =

ax

—B(x)n(t,x,v)+2 / / B(y)k(y,x)p(V',v)n(t,y, V' )dy, dV'

X

with [7° p(V/,v)dv =1

9]
0
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Extensions of the model

Variability:

0 0
an(t,x, V) + &(

vxn(t,x,v)) =

—B(x)n(t,x,v)+2 / / B(y)k(y,x)p(V',v)n(t,y, V' )dy, dV'

X

with [7° p(V/,v)dv =1

9]
0

Age + variability:

%n(t, a,x,v) + %(vxn(t, a, x, v)) = —B(a,x)n(t, a, x, v),
n(t,a=0,x,v) =2 [ [ B(a,y)k(y,x)p(v',v)n(t,a,y,v")dydv'da
x 0
(related (maturity) models: Lebowitz, Rubinow, 1977 - Rotenberg,

1983 - Mischler, Perthame, Ryzhik, 2002,...)
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5. Incorporating variability

Frequency
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Figure : Effect on the distribution of growth rate variability
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5. Incorporating variability
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Effect on the distribution of variability in daughter sizes
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5. What about an Age-Size Model ?

To test it, we would need an extra variable:

0.1
—H 2901
—-H 2901 fitted by age model
0.08; —E 1009 I
- E 1009 fitted by age model
0.06¢ 1

0.04}

0.02

0 10 20 30 40 50
age (min)

Figure : Age distribution: data and fit by the age model
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5. What about an Age-Size Model ?

To test it, we would need an extra variable:

0.1
_ —H 2901
: - H 2901 fitted by age model
0.08[: —E 1009 I
- E 1009 fitted by age model
0.06} :
0.04
0.02f .3
00 150

size
Figure : Size distribution: data and fit by the age model
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Conclusion

» Method may be adapted to other cases and models

» Strong coherence and complementarity between PDE and
statistical approaches, and still many open mathematical
problems

> a basis for new biological questions: coordination between
growth and division, influence of variability...

And many huge thanks to...

Pierre Gabriel, Thibault Bourgeron, Miguel Escobedo, Magali
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Rivoirard, Nathalie Krell, Adélaide Olivier

to be continued!
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