Mathematical modeling of the microtubule dynamic instabilities.

Florence HUBERT
Aix-Marseille University

CIMPA school at Mauritius

Work supported by

AMIDEX project PHARMATHOTUBULE
Plan Cancer AAP ”Physique et cancer”, 2014

December 6th 2016
Collaborators

I2M
Institut de Mathématiques de Marseille

- Ayuna Barlukova (PhD student)
- Christophe Gomez (MCF)
- Rémi Tesson (PhD student)
- Magali Tournus (MCF)
- Diana White (Post-doct)

CRO2
Center of Oncology and onco-pharmacology

- Stéphane Honnoré (MCF-PH)
- Marie Petit (PhD student)
- Sarah Oddoux (Post-doct)
Microtubules

A therapeutic target in oncology
- MTs play a crucial role in
 - cell division
 - cell migration
 - intracellular transport

- MTs are a favorite target of Microtubule Targeting Agents (MTAs)

- MTAs (taxanes, vinca alkaloids) are successfully used as antimitotic and antiangiogenic agent in cancer treatments but also in neurodegenerative diseases.

- MTs are highly dynamic.
 - The dynamics is complex
 - The dynamics is mandatory to cell division and cell migration.
The role of MTs

- Prometaphase and metaphase. MTs dynamics is increased.
 - Find and capture kinetochore.
 - Chromosome’s congression.

- Anaphase
 Stabilization of MTs
 - Chromosome’s separation.

Roles of MTAs

- Increase or reduction of the dynamics induce mitotic abnormalities and thus apoptosis.

http://www.wadsworth.org
Wikipedia
Growing of MTs induces activation of RAC. \Rightarrow High RAC activity promotes the actine retrograd flow in the lamellipodium.

Shortening of MTs induces activation of RHO. \Rightarrow Presence of RHO promotes contraction of stress fiber at the back of the cell.

MTAs and migration

MTAs reduce endothelial migration even at non-cytotoxic concentration.

\Rightarrow Antiangiogenic effect at low dose.
Microtubules Targetting Agents

Mechanism of action

▶ Destabilizers (Vincristine/Vinblastine)
▶ Stabilizers (Taxol)

Main issues in presence of End Binding proteins (EBs)

▶ Much is known about the action of MTAs on MTs at high doses in the absence and presence of EBs.
▶ At low non-cytotoxic levels of MTAs, the dynamics of MTs depend on whether EBs are present.
▶ It has recently been discovered that EBs sensitize the action of MTAs on MT dynamics in vitro [2, 3] and in vivo [1, 2].

Objectives

Main issues of our collaboration

▸ To describe the dynamics thanks to a mathematical model at a microscopic level.
▸ Better understand the role of each reaction in the dynamics and their synergy.
▸ Better understand the mechanism of action of each family of MTAs.
▸ Better understand the role of EBs, especially in presence of low dose of MTAs.
Microtubule structure

MT in the cell

- MTs are part of the cytoskeleton.
- MTs are characterized by their instabilities.

Protein structure

- Each MT is a long (up to 50\(\mu\)m) hollow cylinder of 25nm diameter built from about 13 protofilaments.
- Each protofilament is composed by an assembly of $\alpha|\beta$ tubulin dimers.
- The assembly is polarized with different dynamics at the + end or - end.
Microtubules instabilities

Dynamics overview

- Phase of growing are followed by phases of sudden shortening called **catastrophe**.
- **Phases of catastrophe** are followed by phases of Rescue
Dynamics of one MT

Protein structure
- Each MT is a long (up to 50µm) hollow cylinder of 25nm diameter built from about 13 protofilaments.
- Each protofilament is composed by an assembly of α/β tubulin dimers.
- The assembly is polarized with different dynamics at the + end or - end.
 - + End (tubulin β): highly dynamic
 - − End (tubulin α): link to centrosome in cells

Energetic structure
- Dimers can be in two energy states:
 - GTP: Guanosine triphosphate - active form
 - GDP: Guanosine diphosphate - inactive form
Dynamics of one MT at its + end

Dimers of tubulin
- Dimers can be in two energy states:
 - GTP: Guanosine triphosphate - active form
 - GDP: Guanosine diphosphate - inactive form
- Dimers can be polymerized or not. In fine,
 - GTP polymerized in MTs
 - GDP polymerized in MTs
 - Free GTP
 - Free GDP

- Thanks to EB-GFP fluorescent proteins that bind to GTP-tubulin, are observed
 - A GTP-stabilizing cap
 - The disparition of the cap at the catastrophe

- Four reactions
Deterministic mathematical models

A model of structured population

- Used to follow the mean behavior of a MTs family.

In vitro experiments \rightsquigarrow indicators of the instabilities for the population

- Experiments in cell

\rightsquigarrow MTs tracks captured thanks to PlusTipTracking or Icy software.

Indicators of the instability dynamics

- Growth lifetime, growth distance, growth speed
- Catastrophe frequencies (temporal or spacial)
- Shrinking lifetime, shrinking distance, shrinking rate
- Rescue frequencies (temporal or spacial)
Mathematical challenges

Improve Hinow & al 2009 approach

1. To be able to estimate correctly the indicators of the instability dynamics
2. To take into account aging of MTs.
 - This would enable us to model MTAs.
3. Better represent the depolymerization.
4. To take into account the influence of End Binding Protein (EB1 and EB3) on MTAs efficiency.
 - Fragmentation model.

MTs and migration

3. Take into account MT impact on cell migration.
The unknowns

1. \(u(t, z, x) \) density of MTs with a cap at time \(t \) with a length \(x \) and a cap of length \(z \).
 - Domain: \(\{(t, z, x) \text{ such that } t \geq 0, 0 \leq z \leq x\} \).
 - Boundaries:
 \[
 \begin{align*}
 \Gamma_{nucl} & = \{(t, z, x) \text{ such that } t \geq 0, 0 \leq z = x\} \\
 \Gamma_{cata} & = \{(t, z, x) \text{ such that } t \geq 0, 0 = z \leq x\} \\
 \Gamma_{init} & = \{(t, z, x) \text{ such that } t = 0, 0 \leq z \leq x\}
 \end{align*}
 \]

2. \(v(t, x) \) density of MT in depolymerization at time \(t \) with a length \(x \).
 - Domain: \(\{(t, x) \text{ such that } t \geq 0, 0 \leq x\} \).

3. \(p(t) \) free GTP tubulin available at time \(t \).

4. \(q(t) \) free GDP tubulin available at time \(t \).
Equation for u

\[
\partial_t u + (\gamma_{pol}(p(t)) - \gamma_{hydro}) \partial_z u + \gamma_{pol}(p(t)) \partial_x u = 0
\]

This equation reflects:

- Polymerization of MTs with a velocity γ_{pol} depending on $p(t)$:

![Graph showing the relationship between $\gamma_{pol}(p)$ and p]

- Hydrolysis where γ_{hydro} is assumed to be constant.
Hinow & al 2009 approach

Equation for \(u \)

\[
\partial_t u + \left(\gamma_{pol}(p(t)) - \gamma_{hydro} \right) \partial_z u + \gamma_{pol}(p(t)) \partial_x u = 0
\]

This equation reflects:

- Polymerization of MTs with a velocity \(\gamma_{pol} \) depending on \(p(t) \):
- Hydrolysis where \(\gamma_{hydro} \) is assumed to be constant.

Boundary conditions for \(u \)

- On \(\Gamma_{nucl} \), The sign of the entrance flux \(B \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \gamma_{hydro} > 0 \) is positive
 \[u(t, x, x) = \mu \Psi(x)p(t)^2. \]

- On \(\Gamma_{cata} \), the sign of the entrance flux \(B \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} := R(t) \) depends on the sign of \(R(t) = \gamma_{pol}(p(t)) - \gamma_{hydro} \)
 \[R(t)u(t, 0, x) = \lambda v(t, x) \text{ if } R(t) > 0 \text{ (Rescue)} \]
Hinow & al 2009 approach

Equation for u

$$\partial_t u + \gamma_{pol}(p(t)) \partial_x u + (\gamma_{pol}(p(t)) - \gamma_{hydro}) \partial_z u = 0$$

Equation for v

$$\partial_t v - \gamma_{depol} \partial_x v = -\lambda v(R(t) > 0) + R(t)^- u(t, 0, x) = -R(t)u(t, 0, x)$$

- Depolymerization of MTs with a velocity γ_{depol} assumed to be constant.
- Catastrophe/Rescue events

Equation for p

$$\frac{d}{dt} p = -\gamma_{pol}(p(t)) \int_{0}^{\infty} \int_{0}^{x} u(t, z, x) \, dz \, dx + \kappa q - \mu p^2$$

Equation for q

$$\frac{d}{dt} q = \gamma_{depol} \int_{0}^{\infty} v(t, x) \, dx - \kappa q$$
Hinow & al 2009 approach

Conservation of total tubulin

\[
\frac{d}{dt} (L_u(t) + L_v(t) + p(t) + q(t)) = 0
\]

where

- Total length of MTs with cap: \(L_u(t) = \int_0^\infty \int_0^x xu(t, z, x)dz \, dx \)
- Total length of MTs in depol: \(L_v(t) = \int_0^\infty xv(t, x)dz \, dx \)
Aging of MTs

Frequency of catastrophe in vitro increases with age of MT

Gardner & al, Cell 2011

Kymograph of a MT

Visualization of time evolution of the cap of a MT marked thanks to EB protein.

- Stable growth speed away from catastrophe
- Presence of alterations in the cap (all the more evident in presence of MTAs)
 - Change the profile of γ_{hydro}.

Assumption (A new approach of hydrolysis)

- MTs undergo degradations that stimulates hydrolysis.
 - γ_{hydro} may depend on an age of MT.
- Existence of a delay between incorporation in MT and hydrolysis (decoration time).
A new model of MT instabilities

A. Barlukova PhD work

MTs in polymerization

- **Density of the population of MT in polymerization** $u = u(t, a, z, x)$
 - t time, a age, x length, z length of the cap.
- **Density of the population of MT in depolymerization** $v = v(t, a, x)$
 - t time, a age, x length.
- **Amount of Free GTP tubulin** $p = p(t)$
- **Amount of Free GDP tubulin** $q = q(t)$
A new model of MT instabilities

Balance equation for MT in Polymerization u

\[
\partial_t u + (\gamma_{pol}(p(t)) - \gamma_{hydro}(a)) \partial_z u + \gamma_{pol}(p(t)) \partial_x u + 1 \times \partial_a u = 0
\]

Boundary conditions for u

- **Nucleation**,
 \[u(t, a, x, x) = \psi(x)\Psi(a)\mathcal{N}(p(t)).\]

- **Rescue event**, if the entrance flux
 \[R(t, a) = \gamma_{pol}(p(t)) - \gamma_{hydro}(a) > 0\]

 \[R(t, a)u(t, a, 0, x) = \lambda\Theta(a) \int_0^{+\infty} (a' > a_{res})v(t, a') \, da'\]

- **Age boundary**
 \[u(t, 0, z, x) = 0\]
A new model of MT instabilities

Equation for MT in depolymerization v

\[
\frac{\partial_t v}{\partial x} - \gamma_{\text{depol}} \frac{\partial_x v}{\partial x} + \partial_a u = I_{u\rightarrow v} - I_{v\rightarrow u}
\]

Depolymerization

where

\[
I_{v\rightarrow u} = \lambda (a > a_{\text{res}}) v(t, a, x)
\]

Rescue event

\[
I_{u\rightarrow v} = \Theta(a) \int_0^{+\infty} R(t, a') \cdot u(t, a', 0, x) \, da'
\]

Catastrophe event
A new model of MT instabilities

A. Barlukova PhD work

Equation for free GTP p

$$\frac{d}{dt} p = -\gamma_{pol}(p(t)) \int_{0}^{\infty} \int_{0}^{x} \int_{0}^{\infty} u(t, a, z, x) \, da \, dz \, dx + \kappa q - \mu \mathcal{N}(p)$$

- Recycling
- Nucleation

Equation for free GDP q

$$\frac{d}{dt} q = \gamma_{depol} \int_{0}^{\infty} \int_{0}^{\infty} v(t, a, x) \, da \, dx - \kappa q$$

- Recycling
- Depolymerization
Properties of the new model

Conservation of total tubulin

\[
\frac{d}{dt} (L_u(t) + L_v(t) + p(t) + q(t)) = 0
\]

where

- Total length of MTs with cap: \(L_u(t) = \int_0^\infty \int_0^x \int_0^\infty xu(t, a, z, x) da dz dx \)
- Total length of MTs in depol: \(L_v(t) = \int_0^\infty \int_0^\infty xv(t, a, x) da dx \)
In silico indicators of dynamics

Frequency of catastrophe

\[
F_{cat}^{\text{temp}}(t) = \frac{\int_0^\infty \int_0^\infty \chi \frac{1}{a} u(t, a, 0, x) \, da \, dx}{\int_0^\infty \int_0^\infty \chi u(t, a, 0, x) \, da \, dx}, \quad F_{cat}^{\text{spa}}(t) = \frac{\int_0^\infty \int_0^\infty \chi \frac{1}{x} u(t, a, 0, x) \, da \, dx}{\int_0^\infty \int_0^\infty \chi u(t, a, 0, x) \, da \, dx},
\]

\[x_a = \int_0^a \gamma_{pol}(p(t - a + s)) \, ds, \quad \chi = (R(t, a, x, 0) < 0)\]

Frequency of rescue

\[
F_{res}^{\text{temp}} = \frac{\int_0^\infty \int_0^\infty \frac{1}{a} v(t, a, x) \, da \, dx}{\int_0^\infty \int_0^\infty v(t, a, x) \, da \, dx}, \quad F_{res}^{\text{spa}} = F_{res}^{\text{temp}} \gamma_{\text{depol}}
\]

Mean size of the cap and Decoration time

\[
L_{\text{cap}}^{av}(t) = \frac{\int_0^\infty \int_0^x \int_0^\infty z u(t, a, z, x) \, da \, dz \, dx}{\int_0^\infty \int_0^x \int_0^\infty u(t, a, z, x) \, da \, dz \, dx}, \quad T_{\text{deco}}(t) = \frac{L_{\text{cap}}^{av}(t)}{\gamma_{pol}(p(t))}
\]
Numerical approximation

- Explicit Euler scheme in t
- Finite volume approach in z, x
- Semi-lagrangian in a
- Suitable approximation of integral terms to preserve tubulin at the discrete level.
How to calibrate parameters?

$\alpha_{pol}, p_c, p_s, a_c, a_s, \gamma_{hydro}^{young}, \gamma_{hydro}^{new}, \gamma_{depol}, \lambda, a_{res}, \kappa, \mu$

Observed data

- Minimal concentration of tubulin required for polymerization $\sim p_c = 2$
- Mean growth speed $\gamma_{pol}(p^\infty) \sim$ mean value of $\sim \gamma_{hydro}$
- Mean shortening speed $\sim \gamma_{depol}$
- On kymograph $\sim a_s, \gamma_{hydro}^{young}, \gamma_{hydro}^{new}$
- Decoration time $\sim a_c$
- Frequence of catastrophe (temporal or spacial)
- Frequence of rescue (temporal or spacial)
- Mean size of the cap

<table>
<thead>
<tr>
<th></th>
<th>Growth rate (µm/min)</th>
<th>Shortening rate (µm/min)</th>
<th>Catastrophe rate (per min)</th>
<th>Rescue rate (per min)</th>
<th>Catastrophe Fr. (per µm)</th>
<th>Rescue Fr. (per µm)</th>
<th>N (MTs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.87 ± 1.00</td>
<td>19.09 ± 16.03</td>
<td>1.72 ± 0.12</td>
<td>2.12 ± 0.29</td>
<td>0.47 ± 0.03</td>
<td>0.12 ± 0.01</td>
<td>62</td>
</tr>
<tr>
<td>Patupilone 1 nM</td>
<td>3.47 ± 0.71</td>
<td>36.36 ± 23.44</td>
<td>1.60 ± 0.12</td>
<td>4.03 ± 0.47</td>
<td>0.47 ± 0.03</td>
<td>0.23 ± 0.02</td>
<td>55</td>
</tr>
<tr>
<td>Patupilone 10 nM</td>
<td>3.67 ± 1.16</td>
<td>21.04 ± 15.95</td>
<td>1.89 ± 0.14</td>
<td>3.44 ± 0.44</td>
<td>0.55 ± 0.04</td>
<td>0.19 ± 0.02</td>
<td>53</td>
</tr>
<tr>
<td>Patupilone 100 nM</td>
<td>2.92 ± 1.42</td>
<td>17.93 ± 12.86</td>
<td>2.07 ± 0.19</td>
<td>3.46 ± 0.58</td>
<td>0.85 ± 0.08</td>
<td>0.22 ± 0.03</td>
<td>30</td>
</tr>
<tr>
<td>Paclitaxel 1 nM</td>
<td>4.13 ± 1.47</td>
<td>17.87 ± 11.24</td>
<td>2.10 ± 0.17</td>
<td>3.79 ± 0.49</td>
<td>0.58 ± 0.04</td>
<td>0.23 ± 0.03</td>
<td>37</td>
</tr>
<tr>
<td>Paclitaxel 10 nM</td>
<td>4.89 ± 1.56</td>
<td>21.30 ± 15.85</td>
<td>2.62 ± 0.20</td>
<td>5.77 ± 0.63</td>
<td>0.58 ± 0.045</td>
<td>0.33 ± 0.03</td>
<td>38</td>
</tr>
<tr>
<td>Paclitaxel 100 nM</td>
<td>5.99 ± 1.54</td>
<td>28.12 ± 25.85</td>
<td>2.96 ± 0.19</td>
<td>4.57 ± 0.50</td>
<td>0.50 ± 0.033</td>
<td>0.18 ± 0.02</td>
<td>50</td>
</tr>
</tbody>
</table>
Numerical output of the model

The control test of Pagano & al, 2012

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p_c</th>
<th>p_s</th>
<th>α_{pol}</th>
<th>a_c</th>
<th>a_s</th>
<th>δa</th>
<th>γ_{young}^{hydro}</th>
<th>γ_{old}^{hydro}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>2</td>
<td>15</td>
<td>32</td>
<td>6</td>
<td>60</td>
<td>0.06</td>
<td>3.7</td>
<td>4.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>γ_{depol}</th>
<th>λ</th>
<th>μ</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>19</td>
<td>5</td>
<td>5.9e-3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Growth rate</th>
<th>Shortening rate</th>
<th>Catastrophe Fr (per min)</th>
<th>Catastrophe Fr (per µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagano & al</td>
<td>3.87±1</td>
<td>19.09 ±16</td>
<td>1.72 ±0.12</td>
<td>0.47 ±0.03</td>
</tr>
<tr>
<td>In silico</td>
<td>3.23</td>
<td>19 (= δ, fixed)</td>
<td>1.88</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Global behaviour

In silico kymograph
Numerical output of the model

A. Barlukova PHD work

The control test of Pagano & al, 2012

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p_c</th>
<th>p_s</th>
<th>α_{pol}</th>
<th>a_c</th>
<th>a_s</th>
<th>δa</th>
<th>γ_{young}^{hydro}</th>
<th>γ_{old}^{hydro}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>2</td>
<td>15</td>
<td>32</td>
<td>6</td>
<td>60</td>
<td>0.06</td>
<td>3.7</td>
<td>4.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>γ_{depol}</th>
<th>λ</th>
<th>μ</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>19</td>
<td>5</td>
<td>5.9e-3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Growth rate</th>
<th>Shortening rate</th>
<th>Catastrophe Fr (per min)</th>
<th>Catastrophe Fr (per μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagano & al</td>
<td>3.87±1</td>
<td>19.09±16</td>
<td>1.72±0.12</td>
<td>0.47±0.03</td>
</tr>
<tr>
<td>In silico</td>
<td>3.23</td>
<td>19 (= δ, fixed)</td>
<td>1.88</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Temporal freq of cata
Spacial freq of cata
Decoration time
Impact of MTAs: biological data

Destabilizers (Vincristine/Vinblastine)

- Decrease the growth rate and shrinking rate
- Increase rescue frequencies

Florence HUBERT
December 6th 2016
Stabilizers (Taxol)

- Decrease growth and shrinking rate
- Decrease rescue frequencies
- Non monotonous behaviour wrt concentration

Derry & al (1995)
Impact of MTAs: biological data

Stabilizers (Taxol)

- Increase growth and shrinking rate
- Increase catastrophe and rescue frequencies
- Non monotonous of the rescue frequency behaviour wrt concentration

with EBs

Pagano & al (2012)
Impact of MTAs: output of the model

Parameter sensibility

Hydrolysis

Influence of γ_{hydro}

$a_c = 0.05$, $\gamma_{\text{hydro}}^{\text{old}} = 10.3$

Influence of a_c

Ayuna Barlukova PHD work

γ_{hydro} regulates
- γ_{pol}
- a_c regulates both
 - γ_{pol}
 - f_{temp}
 - f_{cat}
Impact of MTAs: output of the model

Parameter sensibility

Two fundamental parameters: γ_{depol} and a_{res}

- Influence of γ_{depol}
- Influence of a_{res}

Ayuna Barlukova PHD work

Influence of γ_{depol}

- Item γ_{depol} regulates
 - f_{temp}

Influence of a_{res}

- a_{res} regulates
 - f_{temp}
Impact of MTAs: output of the model

Parameter sensibility

Toward a drug effect: synergy of the parameters

\[\gamma_{\text{depol}} + a_{\text{res}} \]

\[\gamma_{\text{depol}} + a_c \]

\[\gamma_{\text{depol}} + a_c + a_{\text{res}} \]

\[\sim \sim \text{Taxol effect without EBs} \]

Ayuna Barlukova PHD work
Fragmentation models

To better modelize sudden depolymerization

\[
\partial_t v - \gamma_{\text{depol}} \partial_x v = -R(t)u(t, 0, x)
\]

\[
-\gamma_{\text{depol}} \partial_x v \sim -\gamma_{\text{depol}} \int_0^x k(x, \tilde{x}) v(t, x) \, d\tilde{x} + \gamma_{\text{depol}} \int_x^\infty k(\tilde{x}, x) v(t, \tilde{x}) \, d\tilde{x}
\]

\[
\sim k(x, \tilde{x}) : \text{probability for a MT of size } x \text{ to reach the size } \tilde{x} < x
\]

work with D. White, M. Tournus
Fragmentation models

Shape of the fragmentation kernel: observations from kymograph

\[
k(x, \tilde{x}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\tilde{x}-x_0)^2}{2\sigma^2}} \text{ if } x < \tilde{x}
\]

\[
k(x, \tilde{x}) = K(\tilde{x}) = \text{Cte} \text{ if } x > x_0
\]
Fragmentation models

Equation for u

$$\partial_t u + \gamma_{pol}(p(t))\partial_x u + (\gamma_{pol}(p(t)) - \gamma_{hydro})\partial_z u = 0$$

Equation for v

$$\partial_t v = -R(t)u(t, 0, x) - \gamma_{depol} \int_0^x k(x, \tilde{x})v(t, x) d\tilde{x} + \gamma_{depol} \int_x^\infty k(\tilde{x}, x)v(t, \tilde{x}) d\tilde{x}$$

Equation for p

$$\frac{d}{dt} p = -\gamma_{pol}(p(t)) \int_0^\infty \int_0^x u(t, z, x) dz dx + \kappa q - \mu p^2$$

Equation for q

$$\frac{d}{dt} q = \gamma_{depol} \int_0^\infty \int_0^x (x - \tilde{x})k(x, \tilde{x})v(t, x) d\tilde{x} dx - \kappa q$$
Consider only size dependance for $u : \sim u(t, x)$
- The model reduces to evolution of u, p, q

Model should nevertheless reflects
- The role of the balance between hydrolysis and growth rate.
 - $\gamma_{pol}(p(t)) < \gamma_{hydro} \Rightarrow$ period of catastrophe
 - $\gamma_{pol}(p(t)) > \gamma_{hydro} \Rightarrow$ period of rescue

We introduce a threshold p_h such that $\gamma_{pol}(p_h) = \gamma_{hydro}$
- $p < p_h \Rightarrow$ period of catastrophe
- $p > p_h \Rightarrow$ period of rescue
Fragmentation models

\(\rightsquigarrow \) A simplified model

Equation for \(u \)

\[
\begin{align*}
\partial_t u + \gamma_{pol}(p(t)) \partial_x u &= \\
&= \psi(x)N(p(t)) \\
&- \gamma_{depol}(p(t) < p_h) \int_0^x k(x, \tilde{x}) u(t, x) \, d\tilde{x} \\
&+ \gamma_{depol}(p(t) < p_h) \int_x^\infty k(\tilde{x}, x) u(t, \tilde{x}) \, d\tilde{x}
\end{align*}
\]

Equation for \(p \)

\[
\frac{d}{dt} p = -\gamma_{pol}(p(t)) \int_0^\infty \int_0^x u(t, z, x) \, dz \, dx + \kappa q - \mu p^2
\]

Equation for \(q \)

\[
\frac{d}{dt} q = \gamma_{depol}(p(t) < p_h) \int_0^\infty \int_0^x (x - \tilde{x}) k(x, \tilde{x}) u(t, x) \, d\tilde{x} \, dx - \kappa q
\]
Role of EB proteins

Introduction of EB in the models

- Fragmentation model
 \[\sim \text{The two populations } u(t, z, x), v(t, x). \]

\[\begin{align*}
\partial_t u & = \gamma_{pol}(p(t)) \partial_x u + \left(\gamma_{pol}(p(t)) - \gamma_{hydro}(EB^b(t)) \right) \partial_z u = 0 \\
\partial_t v & = R(t) - u(t, 0, x) - \lambda_{EB}(R(t) > 0) v(t, x) \\
& \quad + \left(-v(t, x) \int_0^x k(x, \tilde{x}) d\tilde{x} + \int_x^{+\infty} k(\tilde{x}, x) v(t, \tilde{x}) d\tilde{x} \right) \\
p'(t) & = -\gamma_{pol}(p(t)) I_u(t) + \kappa q(t) - \mathcal{N}(p) \\
q'(t) & = -\kappa q(t) + \int_0^{+\infty} v(t, x) \int_0^x (x - \tilde{x}) k(x, \tilde{x}) d\tilde{x} dx
\end{align*} \]

- Proteins EB = modulation of hydrolysis:

\[\frac{d}{dt} EB^b = -k_{off} EB^b(t) + k_{on}(u_{cap}(t))(EB^{tot} - EB^b) \]

and

\[\gamma_{hydro}(EB(t)) = \gamma_1^h + \gamma_2^h EB^b(t), \gamma_{hydro}(EB(t)) = \lambda_1 + \lambda_2 EB^b(t), u_{cap}(t) = \int_0^{+\infty} \int_0^{+\infty} z u(t, z, x) dz dx \]
Role of EB proteins

In vitro findings

- In vitro, EBs are found to increase the catastrophe frequency

 Maurer et al., 2014, Mohan et al., 2013

- EBs also found to increase the growth rate of MTs.
- MT length found to be relatively unchanged

 Mohan et al., 2013

Output of the model

<table>
<thead>
<tr>
<th>EB concentration (nM)</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{pol}</td>
<td>3.54</td>
<td>3.67</td>
<td>3.76</td>
<td>3.83</td>
<td>3.88</td>
<td>3.94</td>
</tr>
<tr>
<td>f_{temp}</td>
<td>1.545</td>
<td>1.595</td>
<td>1.686</td>
<td>1.728</td>
<td>1.764</td>
<td>1.730</td>
</tr>
</tbody>
</table>
Conclusions and perspectives

MTas and aging model

⇒ Go further in the calibration of parameters. Confrontation of the model to a new serie of biological data.

A. Barlukova

Fragmentation model

⇒ Go further in the theoretical study of the model

⇒ asymptotic behaviour

M. Tournus

End binding proteins model

⇒ Go further in the study of the synergy between EB and MTAs.

⇒ Confrontation with a new serie of biological data.

D. White
Thank you very much
Consider a simplified case where MT are structured only by \(t, x \). Let

\[\gamma_{pol}(t) \]

be the growth speed of MT at time \(t \).

\[\mathcal{N}(t, x, x + dx) = \int_{x}^{x+dx} u(t, y) dy \sim dx \ u(t, x) \]

Conservation

\[\mathcal{N}(t + dt, \hat{x}, \hat{x} + dx) = \mathcal{N}(t, x, x + dx) \]

with the new size at \(t + dt \)

\[\hat{x} = x + \gamma_{pol}(t)dt \]

\[\hat{x} + dx = x + dx + \gamma_{pol}(t)dt. \]

Thus

\[dx \ u(t, x) = \left(x + dx - \hat{x} \right) u(t + dt, x + \gamma_{pol}(t)dt) \]

\[= dx \left(u(t, x) + dt \left(\underbrace{u_t(t, x) + \gamma_{pol}(t)u_x(t, x)}_{=0} \right) \right) + \mathcal{O}(dt^2) \]

\[= dx \left(u(t, x) + dt \gamma_{pol}(t)u_x(t, x) \right) + \mathcal{O}(dt^2) \]