A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

Sepideh Mirrahimi

CNRS, Institut de mathématiques de Toulouse, France

Joint work with Sylvain Gandon (CNRS, Montpellier)

CIMPA school, Mauritius, December 2016
A model of population subject to Darwinian evolution and migration

- $z \in \mathbb{R}$: phenotypical trait
- $n_i(z)$: the density of the population’s phenotypical distribution in patch i
- N_i: the total population’s size in patch i:
 \[N_i = \int_{\mathbb{R}} n_i(y) dy. \]
- We consider asexual reproduction
A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

Introduction

A model with two habitats – equilibriums

We want to characterize the stationary solutions

$$-\varepsilon^2 n''_{\varepsilon,i}(z) = n_{\varepsilon,i}(z) R_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).$$
A model with two habitats – equilibriums

We want to characterize the stationary solutions

\[-\varepsilon^2 n^{''}_{\varepsilon,i}(z) = n_{\varepsilon,i}(z)R_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).\]

The fitness of trait \(z\) in patches \(i = 1, 2\):

\[R_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.\]
A model with two habitats – equilibriums

We want to characterize the stationary solutions

\[-\varepsilon^2 \frac{n''}{n_i}(z) = n_{\varepsilon,i}(z)R_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).\]

The fitness of trait \(z\) in patches \(i = 1, 2\):

\[R_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.\]

\(\varepsilon^2\) : The variance of the mutation kernel \(\times\) the probability of mutation.
A model with two habitats – equilibriums

We want to characterize the stationary solutions

\[-\varepsilon^2 n_{\varepsilon,i}''(z) = n_{\varepsilon,i}(z)R_i(z, N_i) + m_j n_{\varepsilon,j}(z) - m_i n_{\varepsilon,i}(z).\]

The fitness of trait \(z\) in patches \(i = 1, 2\):

\[R_i(z, N_i) = r_i - g_i(z - \theta_i)^2 - \kappa_i N_i, \quad \theta_1 = -\theta, \quad \theta_2 = \theta.\]

\(\varepsilon^2\): The variance of the mutation kernel \(\times\) the probability of mutation.

Assumptions:

- \(\varepsilon\) is small
- \(\max(r_1 - m_1, r_2 - m_2) > 0 \implies\) Non-extinction
- \(m_1 > 0, m_2 > 0\) (can be relaxed)
What we bring comparing to previous works

Quantitative genetics:

- One or two Gaussian distributions: Yeaman, Guillaume (2009), Débarre, Ronce, Gandon (2013)
What we bring comparing to previous works

Quantitative genetics:

- One or two Gaussian distributions: Yeaman, Guillaume (2009), Débarre, Ronce, Gandon (2013)

What we do:

- We provide a robust method to characterize analytically the mutation-migration-selection equilibrium (i.e. the stationary solution $n_{\varepsilon,i}(z)$)– going beyond the Gaussian approximation.
What we bring comparing to previous works

Adaptive dynamics:

What we bring comparing to previous works

Adaptive dynamics:

What we do:

- We generalize some results in the framework of adaptive dynamics to the case of non symmetric habitats
What we bring comparing to previous works

Adaptive dynamics:

What we do:

- We generalize some results in the framework of adaptive dynamics to the case of non symmetric habitats
- We make a connection between notions in adaptive dynamics and quantitative genetics.
The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:

- Freidlin (1985), Evans, Souganidis, Barles, ...
The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:

- Freidlin (1985), Evans, Souganidis, Barles, ...

In evolutionary biology: asymptotic behavior of populations with vanishing mutations (nonlocal models):

- Rigorous derivation for homogeneous and heterogeneous environments, interaction with resource, etc.: Barles, Bouin, Champagnat, Jabin, Lam, Lorz, Lou, M., Méleard, Perthame, Souganidis, Taing, Turanova, Wakano
The Hamilton-Jacobi approach for evolutionary biology

An old method to study the asymptotic behavior of reaction-diffusion equations:
- Freidlin (1985), Evans, Souganidis, Barles, ...

In evolutionary biology: asymptotic behavior of populations with vanishing mutations (nonlocal models):
- *Rigorous derivation for homogeneous and heterogeneous environments, interaction with resource, etc.*: Barles, Bouin, Champagnat, Jabin, Lam, Lorz, Lou, M., Méléard, Perthame, Souganidis, Taing, Turanova, Wakano

Towards more quantitative results: characterization of the phenotypical distribution for non-vanishing mutations:
- *Homogeneous environments:* M., Roquejoffre
A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

Introduction

Table of contents

1. Introduction

2. Preliminary results in adaptive dynamics
 - Some notions from adaptive dynamics
 - Identification of the ESS

3. A method to describe selection-mutation-migration equilibria

4. Numerics and comparison with previous results

5. Some heuristics
Table of contents

1 Introduction

2 Preliminary results in adaptive dynamics
 - Some notions from adaptive dynamics
 - Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

5 Some heuristics
Effective fitness

Consider a resident population \((n_1(z), n_2(z))\), with the total population’s sizes \(N_1 = \int_\mathbb{R} n_1(y)dy, N_2 = \int_\mathbb{R} n_2(y)dy\).

Then, the effective growth rate \(W(z; N_1, N_2)\), associated with trait \(z\) in the resident population \((n_1(z), n_2(z))\), is the largest eigenvalue of:

\[
\mathcal{A}(z; N_1, N_2) = \begin{pmatrix}
R_1(z; N_1) - m_1 & m_2 \\
m_1 & R_2(z; N_2) - m_2
\end{pmatrix}
\]
Adaptive dynamics framework–Demographic equilibria

Consider a set $\Omega = \{z_1, \cdots, z_m\}$. The demographic equilibrium corresponding to this set is given by

$$n_i(z) = \sum_{j=1}^{m} \alpha_{j,i}\delta(z - z_j), \quad N_i = \sum_{j=1}^{m} \alpha_{j,i}, \quad i = 1, 2,$$

such that

$$W(z_j, N_1, N_2) = 0, \quad j = 1, \cdots, m,$$

and such that $\left(\begin{array}{c} \alpha_{j,1} \\ \alpha_{j,2} \end{array} \right)$ is the right eigenvector associated with the dominant eigenvalue $W(z_j, N_1, N_2) = 0$ of $A(z_j; N_1, N_2)$.

Adaptive dynamics framework–Demographic equilibria

Since there are two habitats, we consider only monomorphic and dimorphic equilibria:
Adaptive dynamics framework–Demographic equilibria

Since there are two habitats, we consider only monomorphic and dimorphic equilibria:

- A **monomorphic** equilibrium is characterized by

\[n_i^M(z) = N_i^M \delta(z - z^M) \]

with \(\begin{pmatrix} N_1^M \\ N_2^M \end{pmatrix} \) the right eigenvector associated with the dominant eigenvalue \(W(z^M; N_1^M, N_2^M) = 0 \) of \(A(z^M; N_1^M, N_2^M) \).
Adaptive dynamics framework–Demographic equilibria

Since there are two habitats, we consider only monomorphic and dimorphic equilibria:

- **A monomorphic** equilibrium is characterized by
 \[n_i^M(z) = N_i^M \delta(z - z^M) \]
 with \(\left(\begin{array}{c} N_1^M \\ N_2^M \end{array} \right) \) the right eigenvector associated with the dominant eigenvalue \(W(z^M; N_1^M, N_2^M) = 0 \) of \(A(z^M; N_1^M, N_2^M) \).

- **A dimorphic** equilibrium is characterized by:
 \[n_i^D(z) = \nu_{a,i} \delta(z - z_{a}^D) + \nu_{b,i} \delta(z - z_b^D), \quad \nu_{a,i} + \nu_{b,i} = N_i^D \]
 with \(\left(\begin{array}{c} \nu_{k,1} \\ \nu_{k,2} \end{array} \right) \) the right eigenvectors associated with the largest eigenvalues \(W(z_k^D; N_1^D, N_2^D) = 0 \) of \(A(z_k^D; N_1^D, N_2^D) \).
Adaptive dynamics framework–Evolutionary equilibria

Evolutionary stable strategies (ESS):
A set of points \(\Omega^* = \{z_1^*, \cdots, z_m^*\} \) is called an evolutionary stable strategy (ESS) if

\[
W(z, N_1^*, N_2^*) = 0, \quad \text{for } z \in \mathcal{A} \text{ and, } \quad W(z, N_1^*, N_2^*) \leq 0, \quad \text{for } z \notin \mathcal{A},
\]

where \(N_1^* \) and \(N_2^* \) are the total population’s sizes corresponding to the demographic equilibrium associated with the set \(\Omega^* \).
Evolutionary stable strategies (ESS):
A set of points $\Omega^* = \{z_1^*, \cdots, z_m^*\}$ is called an evolutionary stable strategy (ESS) if

$$W(z, N_1^*, N_2^*) = 0, \quad \text{for } z \in A \quad \text{and}, \quad W(z, N_1^*, N_2^*) \leq 0, \quad \text{for } z \notin A,$$

where N_1^* and N_2^* are the total population’s sizes corresponding to the demographic equilibrium associated with the set Ω^*.

When the mutations are very rare, we expect that, in long time, the population concentrates on an ESS.
Migration in both directions – Identification of the ESS

Theorem:
There exists a unique ESS.

(i) The ESS is dimorphic if and only if

\[\frac{m_1 m_2}{4 g_1 g_2 \theta^4} < 1 \]
\[C_1 < \alpha_2 r_2 - \alpha_1 r_1 \]
\[C_2 < \beta_1 r_1 - \beta_2 r_2. \]

with \(C_i \), \(\alpha_i \) and \(\beta_i \) constants depending on \(m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta \) which can be determined explicitly.
Migration in both directions – Identification of the ESS

Theorem:
There exists a unique ESS.
(i) The ESS is dimorphic if and only if
\[
\frac{m_1 m_2}{4 g_1 g_2 \theta^4} < 1 \tag{1}
\]
\[
C_1 < \alpha_2 r_2 - \alpha_1 r_1 \tag{2}
\]
\[
C_2 < \beta_1 r_1 - \beta_2 r_2. \tag{3}
\]

with \(C_i, \alpha_i \) and \(\beta_i \) constants depending on \(m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta \) which can be determined explicitly. Then the dimorphic ESS is given by \(\{-z^{D*}, z^{D*}\} \) with
\[
z^{D*} := \sqrt{\theta^2 - \frac{m_1 m_2}{4 \theta^2 g_1 g_2}}.
\]
Migration in both directions – Identification of the ESS

Theorem:
There exists a **unique ESS**.
(i) The ESS is **dimorphic** if and only if

\[
\frac{m_1 m_2}{4 g_1 g_2 \theta^4} < 1
\]

\[
C_1 < \alpha_2 r_2 - \alpha_1 r_1
\]

\[
C_2 < \beta_1 r_1 - \beta_2 r_2.
\]

with \(C_i \), \(\alpha_i \) and \(\beta_i \) constants depending on \(m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta \) which can be determined explicitly. Then the dimorphic ESS is given by \(\{-z^{D\ast}, z^{D\ast}\} \) with

\[
z^{D\ast} := \sqrt{\theta^2 - \frac{m_1 m_2}{4 \theta^2 g_1 g_2}}.
\]

(ii) If the above conditions are not satisfied then the ESS is **monomorphic**.
Migration in both directions – Identification of the ESS

Theorem:
There exists a unique ESS.
(i) The ESS is dimorphic if and only if
\[
\frac{m_1 m_2}{4 g_1 g_2 \theta^4} < 1
\]
\[
C_1 < \alpha_2 r_2 - \alpha_1 r_1
\]
\[
C_2 < \beta_1 r_1 - \beta_2 r_2.
\]

with \(C_i, \alpha_i \) and \(\beta_i \) constants depending on \(m_1, m_2, g_1, g_2, \kappa_1, \kappa_2, \theta \) which can be determined explicitly. Then the dimorphic ESS is given by \(\{-z^{D*}, z^{D*}\} \) with
\[
z^{D*} := \sqrt{\theta^2 - \frac{m_1 m_2}{4 \theta^2 g_1 g_2}}.
\]

(ii) If the above conditions are not satisfied then the ESS is monomorphic.
For symmetric habitats, the ESS is given by \(\{z^{M*} = 0\} \).
Table of contents

1 Introduction

2 Preliminary results in adaptive dynamics
 - Some notions from adaptive dynamics
 - Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

5 Some heuristics
The selection-mutations-migration equilibria- the method

We want to characterize the equilibrium \((n_{\epsilon,1}(z), n_{\epsilon,2}(z))\):

\[
\begin{align*}
-\varepsilon^2 n''_{\epsilon,1}(z) &= n_{\epsilon,1} R_1(z, N_{\epsilon,1}) + m_2 n_{\epsilon,2}(z) - m_1 n_{\epsilon,1}(z), \\
-\varepsilon^2 n''_{\epsilon,2}(z) &= n_{\epsilon,2} R_2(z, N_{\epsilon,2}) + m_1 n_{\epsilon,1}(z) - m_2 n_{\epsilon,2}(z).
\end{align*}
\]

assuming that \(\varepsilon\) is small.
The selection-mutations-migration equilibria- the method

We want to characterize the equilibrium \((n_{\varepsilon,1}(z), n_{\varepsilon,2}(z))\):

\[
\begin{align*}
-\varepsilon^2 n''_{\varepsilon,1}(z) &= n_{\varepsilon,1} R_1(z, N_{\varepsilon,1}) + m_2 n_{\varepsilon,2}(z) - m_1 n_{\varepsilon,1}(z), \\
-\varepsilon^2 n''_{\varepsilon,2}(z) &= n_{\varepsilon,2} R_2(z, N_{\varepsilon,2}) + m_1 n_{\varepsilon,1}(z) - m_2 n_{\varepsilon,2}(z).
\end{align*}
\]

assuming that \(\varepsilon\) is small. We make a Hopf-Cole transformation

\[
n_{\varepsilon,i}(z) = \frac{1}{\sqrt{2\pi\varepsilon}} \exp\left(\frac{u_{\varepsilon,i}(z)}{\varepsilon}\right).
\]
The selection-mutations-migration equilibria- the method

We want to characterize the equilibrium \((n_{\epsilon,1}(z), n_{\epsilon,2}(z)):\)

\[
\begin{cases}
-\epsilon^2 n''_{\epsilon,1}(z) = n_{\epsilon,1} R_1(z, N_{\epsilon,1}) + m_2 n_{\epsilon,2}(z) - m_1 n_{\epsilon,1}(z), \\
-\epsilon^2 n''_{\epsilon,2}(z) = n_{\epsilon,2} R_2(z, N_{\epsilon,2}) + m_1 n_{\epsilon,1}(z) - m_2 n_{\epsilon,2}(z).
\end{cases}
\]

assuming that \(\epsilon\) is small. We make a Hopf-Cole transformation

\[
n_{\epsilon,i}(z) = \frac{1}{\sqrt{2\pi\epsilon}} \exp \left(\frac{u_{\epsilon,i}(z)}{\epsilon} \right).
\]

Note that a common Gaussian approximation is given by

\[
n_{\epsilon,i}(z) = \frac{N_i}{\sqrt{2\pi\epsilon\sigma}} \exp \left(\frac{-(z-z^*)^2}{\epsilon\sigma^2} \right)
\]

\[
= \frac{1}{\sqrt{2\pi\epsilon}} \exp \left(\frac{-1/\epsilon \sigma^2 (z-z^*)^2 + \epsilon \log \frac{N_i}{\sigma}}{\epsilon} \right).
\]
The selection-mutation-migration equilibria- the method

An expected asymptotic expansion:

\[u_{\varepsilon,i}(z) = u_i(z) + \varepsilon v_i(z) + \varepsilon^2 w_i(z) + O(\varepsilon^3), \]

which means, in terms of \(n_{\varepsilon,i} \),

\[n_{\varepsilon,i}(z) = \frac{1}{\sqrt{2\pi\varepsilon}} \exp \left(\frac{u_i(z)}{\varepsilon} + v_i(z) + \varepsilon w_i(z) + O(\varepsilon^2) \right) \]
The selection-mutation-migration equilibria- the method

An expected asymptotic expansion:

\[u_{\varepsilon,i}(z) = u_i(z) + \varepsilon v_i(z) + \varepsilon^2 w_i(z) + O(\varepsilon^3), \]

which means, in terms of \(n_{\varepsilon,i} \),

\[n_{\varepsilon,i}(z) = \frac{1}{\sqrt{2\pi\varepsilon}} \exp \left(\frac{u_i(z)}{\varepsilon} + v_i(z) + \varepsilon w_i(z) + O(\varepsilon^2) \right) \]

We compute these coefficients using

\[
\begin{cases}
-\varepsilon u''_{\varepsilon,1} = |u'_{\varepsilon,1}|^2 + R_1(z, N_{\varepsilon,1}) + m_2 \exp \left(\frac{u_{\varepsilon,2} - u_{\varepsilon,1}}{\varepsilon} \right) - m_1, \\
-\varepsilon u''_{\varepsilon,2} = |u'_{\varepsilon,2}|^2 + R_2(z, N_{\varepsilon,2}) + m_1 \exp \left(\frac{u_{\varepsilon,1} - u_{\varepsilon,2}}{\varepsilon} \right) - m_2.
\end{cases}
\]
How to compute u_i
How to compute u_i

Theorem:
(i) As $\varepsilon \to 0$, $(n_{\varepsilon,1}, n_{\varepsilon,2})$ converges to (n_1^*, n_2^*), the equilibrium corresponding to the **unique** ESS of the metapopulation.
How to compute u_i

Theorem:

(i) As $\varepsilon \to 0$, $(n_{\varepsilon,1}, n_{\varepsilon,2})$ converges to (n_1^*, n_2^*), the equilibrium corresponding to the **unique ESS** of the metapopulation.

(ii) As $\varepsilon \to 0$, both sequences $(u_{\varepsilon,i})_{\varepsilon}$ converge to a viscosity solution to

\[
\begin{align*}
-|u'(z)|^2 &= W(z, N_1^*, N_2^*), \quad \text{in } \mathbb{R}, \\
\max_{z \in \mathbb{R}} u(z) &= 0.
\end{align*}
\]

Moreover, apart from a very particular set of parameters,

\[
\text{supp } n_1^* = \text{supp } n_2^* = \{ z \mid u(z) = 0 \} = \{ z \mid W(z, N_1^*, N_2^*) = 0 \}.
\]

and hence the solution u is unique.
How to compute \(u \)

Such solution \(u \) can be computed explicitly:
How to compute u

Such solution u can be computed explicitly:

(i) **Monomorphic ESS**: Assume that the unique ESS is monomorphic and is given by $\{z^M_\ast\}$. Then u is given by

$$u(z) = -\left| \int_{z^M_\ast}^z \sqrt{-W(x; N^M_1, N^M_2)} \, dx \right|.$$
How to compute u

Such solution u can be computed explicitly:

(i) **Monomorphic ESS**: Assume that the unique ESS is monomorphic and is given by $\{z^{M*}\}$. Then u is given by

$$u(z) = -\left| \int_{z^{M*}}^{Z} \sqrt{-W(x; N_{1}^{M*}, N_{2}^{M*})} \, dx \right|.$$

(ii) **Dimorphic ESS**: Assume that the unique ESS is dimorphic and is given by $\{z_{a}^{D*}, z_{b}^{D*}\}$. Then u is given by

$$u(z) = \max \left(-\left| \int_{z_{a}^{D*}}^{Z} \sqrt{-W(x; N_{1}^{D*}, N_{2}^{D*})} \, dx \right|, \right.$$

$$\left. -\left| \int_{z_{b}^{D*}}^{Z} \sqrt{-W(x; N_{1}^{D*}, N_{2}^{D*})} \, dx \right| \right).$$
Asymptotic expansions for u, v_i and w_i

We present the results in the **monomorphic case**. The dimorphic case can be analyzed following similar arguments.
Asymptotic expansions for u, v_i and w_i

We present the results in the **monomorphic case**. The dimorphic case can be analyzed following similar arguments.

When $u < 0$, $n_{\varepsilon,i}$ is exponentially small.

⇒ Only the values of v_i and w_i near the ESS point z^{M*} matter.
Asymptotic expansions for u, v_i and w_i

We present the results in the monomorphic case. The dimorphic case can be analyzed following similar arguments.

When $u < 0$, $n_{\varepsilon,i}$ is exponentially small.

⇒ Only the values of v_i and w_i near the ESS point z^{M*} matter.

We indeed compute

$$u(z) = -\frac{A}{2}(z - z^{M*})^2 + B(z - z^{M*})^3 + C(z - z^{M*})^4 + O(z - z^{M*})^5.$$

$$v_i(z) = \log(\sqrt{A}N_{i}^{M*}) + D_i(z - z^{M*}) + E_i(z - z^{M*})^2 + O(z - z^{M*})^3.$$

$$w_i(z) = F_i + O(z - z^{M*}).$$

This is enough to obtain a good approximation of the population’s distribution: moments approximated with an error of order ε^2.
Approximation of the moments

- **Total population:**
 \[N_{\varepsilon,i} = N_{i}^{M*}(1 + \varepsilon(F_{i} + \frac{E_{i} + 0.5D_{i}^{2}}{A} + \frac{3(C + BD_{i})}{A^{2}} + \frac{7.5B_{i}^{2}}{A^{3}})) + O(\varepsilon^{2}). \]

- **Mean:**
 \[\mu_{\varepsilon,i} = \frac{1}{N_{\varepsilon,i}} \int z n_{\varepsilon,i}dz = z^{M*} + \varepsilon \left(3 \frac{B}{A^{2}} + \frac{D_{i}}{A}\right) + O(\varepsilon^{2}). \]

- **Variance:**
 \[\sigma_{\varepsilon,i}^{2} = \frac{1}{N_{\varepsilon,i}} \int (z - \mu_{\varepsilon,i}^{M})^{2} n_{\varepsilon,i}(z)dz = \frac{\varepsilon}{A} + O(\varepsilon^{2}). \]

- **Skewness:**
 \[s_{\varepsilon,i} = \frac{1}{\sigma_{\varepsilon,i}^{3} N_{\varepsilon,i}} \int (z - \mu_{\varepsilon,i})^{3} n_{\varepsilon,i}(z)dz = 6 \frac{B^{3}}{A^{3}} \sqrt{\varepsilon} + O(\varepsilon^{3/2}). \]
Table of contents

1 Introduction

2 Preliminary results in adaptive dynamics
 ■ Some notions from adaptive dynamics
 ■ Identification of the ESS

3 A method to describe selection-mutation-migration equilibria

4 Numerics and comparison with previous results

5 Some heuristics
Symmetric habitats with monomorphic ESS

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.1$.

$$r_{\text{max}} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 1.$$
Symmetric habitats with monomorphic ESS

Comparison between **numerical** and **analytical** solution for $n_{\varepsilon,1}(z)$ (at left) and $n_{\varepsilon,2}(z)$ (at right) with $\varepsilon = 0.1$.

$$r_{\text{max}} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 1.$$

In particular, we correct the approximation of the variance:

$$\sigma_{\varepsilon,i}^2 = \varepsilon / \sqrt{g(1 - 2g\theta^2 / m)} + O(\varepsilon^2),$$
Symmetric habitats with monomorphic ESS

Comparison of the solutions n_1 and n_2 with Gaussian distribution with fixed variance (previous approximation given in Debarre et al. 2013).
Symmetric habitats with monomorphic ESS

Comparison of the solutions n_1 and n_2 with Gaussian distribution with fixed variance (previous approximation given in Debarre et al. 2013).
Symmetric habitats with monomorphic ESS

<table>
<thead>
<tr>
<th></th>
<th>Numerical</th>
<th>Analytical</th>
<th>Gaussian approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>2.68</td>
<td>2.68</td>
<td>2.75</td>
</tr>
<tr>
<td>N_2</td>
<td>2.68</td>
<td>2.68</td>
<td>2.75</td>
</tr>
<tr>
<td>μ_1</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0</td>
</tr>
<tr>
<td>μ_2</td>
<td>0.06</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>σ_1^2</td>
<td>0.13</td>
<td>0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>σ_2^2</td>
<td>0.13</td>
<td>0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>s_1</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>-0.04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Comparison between **numerical** and **analytical** values for the total populations, the mean trait, the variance and the skewness in the two habitats, for $\varepsilon = 0.1$.
Symmetric habitats with dimorphic ESS

\[r_{\text{max}} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 0.2. \]

Comparison between \textbf{numerical} and \textbf{analytical} solution for \(n_{\varepsilon,1}(z) \) (at left) and \(n_{\varepsilon,2}(z) \) (at right) with \(\varepsilon = 0.01 \).
A Hamilton-Jacobi approach to describe the evolutionary equilibria in heterogeneous environments

Symmetric habitats with dimorphic ESS

\[r_{max} = 3, \quad g = 1, \quad \theta = 0.5, \quad \kappa = 1, \quad m = 0.2. \]

Comparison of the solutions \(n_{\epsilon,1}(z) \) (at left) and \(n_{\epsilon,2}(z) \) (at right) with the Gaussian approximations with fixed variance.
Symmetric habitats with dimorphic ESS

<table>
<thead>
<tr>
<th></th>
<th>Numerical</th>
<th>Analytical</th>
<th>Gaus. approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{a,1})</td>
<td>-0.455</td>
<td>-0.455</td>
<td>-0.458</td>
</tr>
<tr>
<td>(\mu_{a,2})</td>
<td>-0.431</td>
<td>-0.433</td>
<td>-0.458</td>
</tr>
<tr>
<td>(\mu_{b,1})</td>
<td>0.431</td>
<td>0.433</td>
<td>0.458</td>
</tr>
<tr>
<td>(\mu_{b,2})</td>
<td>0.455</td>
<td>0.455</td>
<td>0.458</td>
</tr>
<tr>
<td>(\sigma_{a,1}^2)</td>
<td>0.011</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>(\sigma_{a,2}^2)</td>
<td>0.012</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>(\sigma_{b,1}^2)</td>
<td>0.012</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>(\sigma_{b,2}^2)</td>
<td>0.011</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>(s_{a,1})</td>
<td>0.049</td>
<td>0.036</td>
<td>0</td>
</tr>
<tr>
<td>(s_{a,2})</td>
<td>0.081</td>
<td>0.036</td>
<td>0</td>
</tr>
<tr>
<td>(s_{b,1})</td>
<td>-0.081</td>
<td>-0.036</td>
<td>0</td>
</tr>
<tr>
<td>(s_{b,2})</td>
<td>-0.049</td>
<td>-0.036</td>
<td>0</td>
</tr>
</tbody>
</table>
Some heuristic arguments to understand the results

The Hopf-Cole transformation $u_{\epsilon,i} = \epsilon \log(n_{\epsilon,i})$ leads to

$$-\epsilon u_{\epsilon,i}'' = |u_{\epsilon,i}'|^2 + R_i(z, N_{\epsilon,i}) + m_j \exp\left(\frac{u_{\epsilon,j} - u_{\epsilon,i}}{\epsilon}\right) - m_i,$$

with $i = 1, 2$ and $j = 2, 1$.
Some heuristic arguments to understand the results

The Hopf-Cole transformation $u_{\epsilon,i} = \epsilon \log(n_{\epsilon,i})$ leads to

$$-\epsilon u_{\epsilon,i}'' = |u_{\epsilon,i}'|^2 + R_i(z, N_{\epsilon,i}) + m_j \exp\left(\frac{u_{\epsilon,j} - u_{\epsilon,i}}{\epsilon}\right) - m_i,$$

with $i = 1, 2$ and $j = 2, 1$.

We expect the following expansion

$$u_{\epsilon,i} = u_i + \epsilon v_i + \epsilon^2 w_i + O(\epsilon^3).$$
Some heuristic arguments to understand the results

The Hopf-Cole transformation $u_{\varepsilon,i} = \varepsilon \log(n_{\varepsilon,i})$ leads to

$$-\varepsilon u''_{\varepsilon,i} = |u'_{\varepsilon,i}|^2 + R_i(z, N_{\varepsilon,i}) + m_j \exp\left(\frac{u_{\varepsilon,j} - u_{\varepsilon,i}}{\varepsilon}\right) - m_i,$$

with $i = 1, 2$ and $j = 2, 1$.

We expect the following expansion

$$u_{\varepsilon,i} = u_i + \varepsilon v_i + \varepsilon^2 w_i + O(\varepsilon^3).$$

The term with $\frac{1}{\varepsilon}$ indicates that

$$u_1 = u_2 = u.$$
Some heuristic arguments to understand the results

The Hopf-Cole transformation $u_{\varepsilon,i} = \varepsilon \log (n_{\varepsilon,i})$ leads to

$$-\varepsilon u_{\varepsilon,i}'' = |u_{\varepsilon,i}'|^2 + R_i(z, N_{\varepsilon,i}) + m_j \exp \left(\frac{u_{\varepsilon,j} - u_{\varepsilon,i}}{\varepsilon} \right) - m_i,$$

with $i = 1, 2$ and $j = 2, 1$.

We expect the following expansion

$$u_{\varepsilon,i} = u_i + \varepsilon v_i + \varepsilon^2 w_i + O(\varepsilon^3).$$

The term with $\frac{1}{\varepsilon}$ indicates that

$$u_1 = u_2 = u.$$

Then, keeping the zero order terms we obtain

$$-|u'(z)|^2 = R_i(z, N_i) + m_j \exp(v_j(z) - v_i(z)) - m_i.$$
The last line means
\[
\begin{pmatrix}
R_1(z; N_1) - m_1 & m_2 \\
m_1 & R_2(z; N_2) - m_2
\end{pmatrix}
\begin{pmatrix}
ev_1(z) \\
ev_2(z)
\end{pmatrix}
= -|u'(z)|^2
\begin{pmatrix}
ev_1(z) \\
ev_2(z)
\end{pmatrix}.
\]
The last line means
\[
\begin{pmatrix}
R_1(z; N_1) - m_1 & m_2 \\
m_1 & R_2(z; N_2) - m_2
\end{pmatrix}
\begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix}
= -|u'(z)|^2 \begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix}.
\]

It follows that \(-|u'(z)|^2\) is the dominant eigenvalue of the matrix \(A\) and hence
\[-|u'(z)|^2 = W(z, N_1, N_2).\]
The last line means
\[
\begin{pmatrix}
R_1(z; N_1) - m_1 & m_2 \\
m_1 & R_2(z; N_2) - m_2
\end{pmatrix}
\begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix}
= -|u'(z)|^2
\begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix}.
\]

It follows that $-|u'(z)|^2$ is the dominant eigenvalue of the matrix A and hence
\[-|u'(z)|^2 = W(z, N_1, N_2).\]

In particular
\[W(z, N_1, N_2) \leq 0.\]
The last line means
\[
\begin{pmatrix}
R_1(z; N_1) - m_1 & m_2 \\
m_1 & R_2(z; N_2) - m_2
\end{pmatrix}
\begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix} = -|u'(z)|^2 \begin{pmatrix}
e^{v_1(z)} \\
e^{v_2(z)}
\end{pmatrix}.
\]

It follows that $-|u'(z)|^2$ is the dominant eigenvalue of the matrix A and hence
\[-|u'(z)|^2 = W(z, N_1, N_2).\]

In particular
\[W(z, N_1, N_2) \leq 0.\]

Moreover, from the boundedness of the total population, we obtain
\[u \leq 0, \quad \text{supp } n_1 = \text{supp } n_2 = \{u = 0\},\]

and hence
\[\text{supp } n_1 = \text{supp } n_2 = \{u = 0\} \subset \{W(z, N_1, N_2) = 0\}.\]
In particular:

\[W(z, N_1, N_2) \leq 0, \quad \text{for } z \notin \mathcal{O}, \quad W(z, N_1, N_2) = 0, \quad \text{for } z \in \mathcal{O}, \]

with

\[\mathcal{O} = \text{supp } n_1 = \text{supp } n_2, \]
In particular:

\[W(z, N_1, N_2) \leq 0, \quad \text{for } z \not\in \mathcal{O}, \quad W(z, N_1, N_2) = 0, \quad \text{for } z \in \mathcal{O}, \]

with

\[\mathcal{O} = \text{supp } n_1 = \text{supp } n_2, \]

which means that \(\mathcal{O} \) is an ESS. From the uniqueness of ESS we obtain

\[n_i = n_i^*, \quad N_i = N_i^*. \]
In particular:

\[W(z, N_1, N_2) \leq 0, \quad \text{for } z \notin \mathcal{O}, \quad W(z, N_1, N_2) = 0, \quad \text{for } z \in \mathcal{O}, \]

with

\[\mathcal{O} = \text{supp } n_1 = \text{supp } n_2, \]

which means that \(\mathcal{O} \) is an ESS. From the uniqueness of ESS we obtain

\[n_i = n_i^*, \quad N_i = N_i^*. \]

Moreover, one can indeed show that

\[W(z, N_1^*, N_2^*) < 0, \quad \text{for } z \notin \mathcal{O}, \quad W(z, N_1^*, N_2^*) = 0, \quad \text{for } z \in \mathcal{O}, \]
We recall that

\[
\begin{cases}
-|u'(z)|^2 = W(z, N_1^*, N_2^*), \\
\max_{\mathbb{R}} u(z) = 0.
\end{cases}
\]
We recall that

\[
\begin{cases}
-|u'(z)|^2 = W(z, N_1^*, N_2^*), \\
\max_{\mathbb{R}} u(z) = 0.
\end{cases}
\]

A property related to the \textbf{weak KAM} theory: any viscosity solution of the above equation is determined by its values at the maximum points of W.
We recall that

\[
\begin{cases}
-|u'(z)|^2 = W(z, N_1^*, N_2^*), \\
\max_{\mathbb{R}} u(z) = 0.
\end{cases}
\]

A property related to the weak KAM theory: any viscosity solution of the above equation is determined by its values at the maximum points of W.

However, we already know that at the maximum points of W, $u(z) = 0$. This allows us to determine u in a unique way.
Conclusion

- We provide an analytic approximation of the selection–mutation–migration equilibrium which goes beyond the Gaussian approximations.
- We make a connection between the theories of quantitative genetics and adaptive dynamics.
- We introduce a robust method based on Hamilton-Jacobi equations that can also be used in other contexts.
Thank you for your attention!