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Kermack-McKendrick SIR model

1905 : plague epidemic in Mumbai

Figure: K.-McK. Proc. R. Soc. Lond. A (115), 1927

Question : How can we prevent such an epidemic ?
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Kermack-McKendrick SIR model

1927 : first model to understand epidemic process

S -
βI

I -
γ

R

SIR model 
dS(t)
dt

= −βS(t)I(t)

dI(t)
dt

= βS(t)I(t)− γI(t)

dR(t)
dt

= γI(t)

Question : Can we extract a tool to measure the disease risk ?
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From an heuristic definition of R0...

At the early begining...

1 A demographic concept [Böckh (1886) – Dublin & Lotka (1925)] :

R0 =

∫ ∞
0

P(a)︸ ︷︷ ︸
survival

β(a)︸︷︷︸
fertility

da

2 Extension to epidemiology :

"Mosquitoe theorem" [Ross (1911)]

Pest epidemic in Mumbai [Kermack & McKendrick (1927)]

Link with demographic concept [MacDonald (1952)]

Epidemiological concept

R0 : number of secondary infections resulting from a single primary infection
into an otherwise susceptible population.

Why is R0 a threshold marker of epidemic ? → introduction of p infected
individuals ⇒ (R0)kp infected individuals after step k.



R0 History R0 calculation What to do with a R0 ? Difficulties with PDEs

... to a mathematical definition of R0

Mathematical translation through dynamical systems
[Diekmann & Heersterbeck (1990)]

Mathematical translation

R0 : bifurcation threshold that ensures (R0 < 1) or not (R0 > 1) the stability
of a specific equilibrium point, the disease-free equilibrium (DFE)

Finite and infinite dimensional systems ;

Determine the DFE ;

Linked to spectral properties of the linearized problem about the DFE

Question : How can we calculate a R0 ?
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The next generation matrix

An efficient method for R0 calculation in ODE epidemic models
[Van Den Driessche & Watmough (2002)]

ẋ(t) = f(x(t)), x = (x1 . . . , xp, xp+1 , . . . , xn︸ ︷︷ ︸
infected

)T

f(x) = F(x) + V(x)︸ ︷︷ ︸
=(V+−V−)(x)

with

Fi flux of newly infected

V+
i (resp. V−i ) other entering fluxes (resp. leaving fluxes)

-
V+
i

?

Fi

xi -
V−i
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The next generation matrix

With DFE x∗ = (x∗1, . . . , x
∗
p, 0, . . . , 0),

Dx∗F =

(
0 0
0 F

)
, Dx∗V =

(
� �
0 V

)

Theorem [Van Den Driessche & Watmough, Math. Biosci., 180 (2002)]

The R0 value related to the epidemic system ẋ(t) = f(x(t)) is given by

R0 = ρ(−FV −1)

Sketch of proof :

−FV −1 ≥ 0 (Metzler matrices theory)

the spectral radius is an eigenvalue (Perron-Frobenius theorem)

linearization + Varga theorem

�
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The next generation matrix

Some remarks :

−FV −1 is the "next generation matrix"

→ interpretation

requires to determine the DFE x∗

x∗ is locally asymptotically stable when R0 < 1

efficiency : reduction method !
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What to do with a R0 ?

R0 utility through 4 examples :

1 Measure of epidemic risk & prediction

2 Control strategy ("herd immunity")

3 Impact of biodiversity on the disease dynamics

4 Extinction VS. persistence
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Example 1 : Measure of epidemic risk & prediction

SIR model of Kermack-McKendrick :

S -βI
I -γ

R

SIR model 
dS(t)
dt

= −βS(t)I(t)

dI(t)
dt

= βS(t)I(t)− γI(t)

dR(t)
dt

= γI(t)

DFE x∗ = (S∗, 0, 0), F = βS∗, V = −γ

R0 =
βS∗

γ
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 0.7
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 0.9
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 1
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 1.5
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 3
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 5
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Example 1 : Measure of epidemic risk & prediction

Figure: SIR model, simulation with R0 = 5



R0 History R0 calculation What to do with a R0 ? Difficulties with PDEs

Example 2 : Control strategy

1- Malaria and Ross’ "Mosquitoe theorem"

Ross model 
dIH (t)
dt

= ab1IM
H−IH
H
− γIH

dIM (t)
dt

= ab2(M − IM ) IM
M
− µIM

with

H (resp. M) constant population of humans (resp. mosquitoes)

IH (resp IM ) number of infected humans (resp. mosquitoes)

a number of bites / mosquitoe and time unit

b1 proba that a bite generates a human infection

b2 proba that a mosquitoe becomes infected

1/γ infection period for human

1/µ mosquitoe lifespan
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Example 2 : Control strategy

DFE (0, 0)

F =

(
0 ab1

ab2M
H

0

)
V =

(
−γ 0
0 −µ

)

R0 = ρ(−FV −1) =

√
a2b1b2M

γµH

−→ Emphasizes the Ross’ "Mosquitoe theorem" !
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Example 2 : Control strategy

DFE (0, 0)

F =

(
0 ab1

ab2M
H

0

)
V =

(
−γ 0
0 −µ

)

R0 = ρ(−FV −1) =

√
a2b1b2M

γµH

−→ Emphasizes the Ross’ "Mosquitoe theorem" !
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Example 2 : Control strategy

2- "Herd immunity" in disease vaccination

SEIS model - Assumptions :

no vertical transmission

exposure period

no natural immunity

healed become susceptible

@
@R

Λ

S -
βI

E -
α

I

?µ ?µ ?µ+ γ
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Example 2 : Control strategy

SEIS model 
dS(t)
dt

= Λ− βS(t)I(t)− µS(t)

dE(t)
dt

= βS(t)I(t)− (α+ µ)E(t)

dI(t)
dt

= αE − (γ + µ)I(t)

x∗ =
(

Λ
µ
, 0, 0

)
DFE

F =

(
0 0

0 βΛ
µ

)
V =

(
0 −(α+ µ)

−(γ + µ) α

)

R0 = ρ(−FV −1) =
αβΛ

µ(µ+ α)(µ+ γ)
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Example 2 : Control strategy

SEIS model 
dS(t)
dt

= (1− ε)Λ− βS(t)I(t)− µS(t)

dE(t)
dt

= βS(t)I(t)− (α+ µ)E(t)

dI(t)
dt

= αE − (γ + µ)I(t)

x∗ =
(

(1−ε)Λ
µ

, 0, 0
)
DFE

F =

(
0 0

0 β(1−ε)Λ
µ

)
V =

(
0 −(α+ µ)

−(γ + µ) α

)
R̃0 = (1− ε)R0

Vaccination of a proportion ε of new borns : ε > 1− 1
R0
⇒ R̃0 < 1 !
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Disease R0 Herd immunity

Mumps 4-7 75-86 %

Polio 5-7 80-86 %

Small pops 5-7 80-85 %

Diphteria 6-7 85 %

Rubella 6-7 83-85 %

Measles 12-18 83-94 %

Table: R0 and herd immunity thresholds for vaccine-preventable diseases [Am.
J. Prev. Med., 20 (2001)]
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Disease R0 Herd immunity

Mumps 4-7 75-86 %

Polio 5-7 80-86 %

Small pops 5-7 80-85 %

Diphteria 6-7 85 %

Rubella 6-7 83-85 %

Measles 12-18 83-94 %

Table: R0 and herd immunity thresholds for vaccine-preventable diseases [Am.
J. Prev. Med., 20 (2001)]

−→ Eradication in 1977 !
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Example 3 : Impact of biodiversity on the disease dynamics

Trophically transmitted parasite : Echinococcus multilocularis
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Example 3 : Impact of biodiversity on the disease dynamics

Echinococcus transmission model [Baudrot, Perasso, Fritsch & Raoul (2016)]

growth predation epidemic
dzS

dt
= bzz −

(
mz + (bz −mz)

zS + zI

kz

)
zS − zS

∑
i

ηiΦi(x1, x2)
xiI

xi

+ µzI

dxiS

dt
= bxi −

m + (b −m)

∑
j

xjS + xjI

k

 xiS −Φi(x1, x2)
xiS

xi

z − zIΓixiS

dzI

dt
= −

(
mz + (bz −mz)

zS + zI

kz

)
zI + zS

∑
i

ηiΦi(x1, x2)
xiI

xi

− µzI

dxiI

dt
= −

m + (b −m)

∑
j

xjS + xjI

k

 xiI −Φi(x1, x2)
xiI

xi

z + zIΓixiS
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Example 3 : Impact of biodiversity on the disease dynamics

Echinococcus transmission model [Baudrot, Perasso, Fritsch & Raoul (2016)]

growth predation epidemic
dzS

dt
= bzz −

(
mz + (bz −mz)

zS + zI

kz

)
zS − zS

∑
i

ηiΦi(x1, x2)
xiI

xi

+ µzI

dxiS

dt
= bxi −

m + (b −m)

∑
j

xjS + xjI

k

 xiS −Φi(x1, x2)
xiS

xi

z − zIΓixiS

dzI

dt
= −

(
mz + (bz −mz)

zS + zI

kz

)
zI + zS

∑
i

ηiΦi(x1, x2)
xiI

xi

− µzI

dxiI

dt
= −

m + (b −m)

∑
j

xjS + xjI

k

 xiI −Φi(x1, x2)
xiI

xi

z + zIΓixiS
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Example 3 : Impact of biodiversity on the disease dynamics

Theorem [Baudrot et al., JTB, 397 (2016)]

1 existence of DFE (z∗, x∗1, x
∗
2, 0, 0, 0)

2 Next generation matrix :

−FV −1 =


0

η1z
∗Φ1(x∗1, x

∗
2)

x∗1b

η2z
∗Φ2(x∗1, x

∗
2)

x∗2b
Γ1x

∗
1

bz + µ
0 0

Γ2x
∗
2

bz + µ
0 0


3 Basic reproductive number :

R0 =

√
z∗

b(bz + µ)
× (η2Γ2Φ2(x∗1, x

∗
2) + η1Γ1Φ1(x∗1, x

∗
2))

Sketch of proof :
Model reduction with different time scales (parasite cycle VS. host
dynamics)

change of variables (x1, x2) 7→
(
x1 + x2,

x1
x1+x2

)
to get the DFE �
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Example 3 : Impact of biodiversity on the disease dynamics

Eco-epidemiological question : How variability in host competence impacts the
parasite dynamics ?
→ Density-dependant dilution of the parasite !

R0 =

√
z∗

b(bz + µ)
× (η2Γ2Φ2(x∗1, x

∗
2) + η1Γ1Φ1(x∗1, x

∗
2))

Figure: Impact of prey availability on R0, with Γ1 = Γ2 (left) and Γ1 < Γ2 (right)
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Example 3 : Impact of biodiversity on the disease dynamics

Eco-epidemiological question : How variability in host competence impacts the
parasite dynamics ?
→ Density-dependant dilution of the parasite !

R0 =

√
z∗

b(bz + µ)
× (η2Γ2Φ2(x∗1, x

∗
2) + η1Γ1Φ1(x∗1, x

∗
2))

Figure: Impact of prey availability on R0, with Γ1 = Γ2 (left) and Γ1 < Γ2 (right)
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Example 3 : Impact of biodiversity on the disease dynamics

Eco-epidemiological question : How variability in host competence impacts the
parasite dynamics ?
→ The total of prey impacts the effect of biodiversity on the epidemic risk
(dilution/amplification)
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Example 3 : Impact of biodiversity on the disease dynamics

Eco-epidemiological question : How variability in host competence impacts the
parasite dynamics ?
→ The total of prey impacts the effect of biodiversity on the epidemic risk
(dilution/amplification)
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Example 4 : Extinction VS. persistence

The DFE is locally asymptotically stable whenever R0 < 1 and unstable if
R0 > 1.

Can we say more than "locally" when R0 < 1 ?

Persistence of the disease when R0 > 1 ? → the instability of DFE is not
enough !

And what about R0 = 1 ?

Definition (uniform persistence)

The disease is uniformly persistent if

∃ε > 0, ∀I0 > 0⇒ lim inf
t→+∞

I(t) ≥ ε.
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Example 4 : Extinction VS. persistence

The DFE is locally asymptotically stable whenever R0 < 1 and unstable if
R0 > 1.

Can we say more than "locally" when R0 < 1 ?

Persistence of the disease when R0 > 1 ? → the instability of DFE is not
enough !

And what about R0 = 1 ?

Definition (uniform persistence)

The disease is uniformly persistent if

∃ε > 0, ∀I0 > 0⇒ lim inf
t→+∞

I(t) ≥ ε.
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Example 4 : Extinction VS. persistence

Global stability properties [Korobeinikov & Wake, (2002)]
dS(t)
dt

= Λ− βS(t)I(t)− µSS(t)

dI(t)
dt

= βS(t)I(t)− µII(t)

x∗ =
(

Λ
µS
, 0
)
DFE

x̄ =
(

1
R0
, µS
µI

(1− 1
R0

)
)
Endemic Equilibrium (EE) with

R0 =
βΛ

µSµI

Theorem [Korobeinikov & Wake, Appl. Math. Lett., 15 (2002)]

R0 ≤ 1⇒ DFE is globally stable ;

R0 > 1⇒ EE is globally stable

Remark : uniform persistence when R0 > 1 !
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Example 4 : Extinction VS. persistence

Idea of the proof : use of Lyapunov functions

L(S, I) = S̄g

(
S

S̄

)
+ Īg

(
I

Ī

)
with the key function g(z) = z − 1− ln(z) L satisfies

L is definite positive

‖(S, I)‖ → ∞⇒ L(S, I)→∞
d[L(S(t),I(t)]

dt
< 0

Theorem of Lyapunov ⇒ global stability

�

Some extensions :

SIR, SIRS and SIS [Korobeinikov & Wake]

Multi-strains SIR, SIS models [Bichara, Iggidr & Sallet (2014)]



R0 History R0 calculation What to do with a R0 ? Difficulties with PDEs

contents

1 A brief history of R0

2 A recipee for R0 calculation

3 What to do with a R0 ?

4 Main difficulties arising with structured PDE
models



R0 History R0 calculation What to do with a R0 ? Difficulties with PDEs

SI structured models in epidemiology

−→ population structured according to variable of

age of infection

immunity level

infection load

time before detection...

in

the transmission process

the evolution of the disease

Applications : nosocomial infections, HIV, salmonella, BSE-Bovine Spongiform

Encephalopathy, Scrapie, CWD-Chronic Wasting Disease, Influenza...

References : Diekmann & Heesterbeek, Gurtin & MacCamy, Ianelli, Magal, Thieme, Webb,

Laroche & Perasso...
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SI structured models in epidemiology

Infection load-structured model

* infection load i ≥ i−
* evolution di

dt = σ(i)
dS
dt = γ − µ0S −Θ(t, S(t))− SH(I)

∂I(t,i)
∂t + ∂(σ(i)I(t,i))

∂i = −µ(i)I + Φ(i)S(t)H(I)

σ(i−)I(t, i−) = Θ(t, S(t))

with H(I) =
∫ +∞
i−

β(i)I(t, i)di

Theorem [Perasso & Razafison, Siam J. Appl. Math., 74(5) (2014)]

For Θ ≡ 0 and σ(i) = νi,

R0 =
γ

µ0

∫ +∞

i−

1

νi

∫ i

i−
Φ(s)e−

∫ i
s
µ(l)
νl dl ds
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SI structured models in epidemiology

Infection load-structured model

* infection load i ≥ i−
* evolution di

dt = σ(i)
dS
dt = γ − µ0S −Θ(t, S(t))− SH(I)

∂I(t,i)
∂t + ∂(σ(i)I(t,i))

∂i = −µ(i)I + Φ(i)S(t)H(I)

σ(i−)I(t, i−) = Θ(t, S(t))

with H(I) =
∫ +∞
i−
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For Θ ≡ 0 and σ(i) = νi,
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γ
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i−

1
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∫ i
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∫ i
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What is different ?
The structure variable implies to deal with infinite dimensional systems !

So, if we want to apply the next generation matrix method...
requires a suitable theoretical framework (functional spaces)
no matrices but differential operators
the spectral properties are different (essential spectrum)
the expression of R0 depends on the structure variable
the local stability properties through linearization fail
global stability : infinite dimensional Lyapunov functions (global attractor,
but the stability fails -> Lasalle invariance principle)

But some results...

age of infection models : local stability of DFE [Castillo-Chavez & Feng

(1998)] ; global stability of DFE & of EE [Magal, McCluskey & Webb

(2010-2013)]

infection load models (with exponential growth) : local stability of DFE &
EE [Perasso & Razafison (2014)]

two structuring variables : global stability of the DFE [Laroche & Perasso

(2016)]
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THANK YOU !
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