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Introduction

Context : we have a population of “individuals” which evolve in

time and discrete values (in time) of these evolutions

Objectives : build a model for these dynamics

e.g. one or several ODE’s, SDE’s, PDE’s, etc

containing parameters allowing to adjust

to all individuals’ dynamics

and recover these parameters from time measurements.



Some existing works

Inverse problem approaches : huge literature.

essentially done indiv. by indiv.

Another viewpoint : use knowledge from all the population

and adopt a statistical approach.

Again : huge literature

♣ See Lectures by Marie Doumic and Laurent Dumas ♣







Previously done in the team

A population study with an ODE model : statistically robust.

For more details, see : B. Ribba et al. A Tumor Growth Inhibition
Model for Low-Grade Glioma Treated with Chemotherapy or
Radiotherapy. Clin Cancer Res. Sep 15 ;18(18) :5071-80 (2012)

One of the next questions is : can we extend this kind of
population approach to a PDE model ?

In particular, for gliomas, numerous previous studies are based
on a KPP model (reaction-diffusion). See, e.g. :
• Mandonnet et al. Computational modeling of the WHO grade II glioma dynamics :

principles and applications to management paradigm. Neurosurg Rev 2008 ;31 :263-9.

• Murray JD. Mathematical biology. 3rd ed. New York : Springer ; 2002.

• Swanson et al. Virtual and real brain tumors : using mathematical modeling to

quantify glioma growth and invasion. J Neurol Sci 2003 ;216 :1-10.
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A closer look at the population algorithm

yij = f (xij , ψi) + εij ,1 ≤ i ≤ N,1 ≤ j ≤ ni (1)

yij ∈ R : j th observation of individual i

N : number of individuals

ni : number of observations of individual i

xij ∈ Rnx : known design variables

ψi : vector of the nψ unknown individual parameters



A closer look – Non linear mixed effects models

yij = f (xij , ψi) + εij ,1 ≤ i ≤ N,1 ≤ j ≤ ni

ψi = h(ci , µ, ηi), e.g. ψik = µk + ηik = ψpop
k + ηik (2)

ci : known vector of M covariates

µ : unknown vector of fixed effects (size p)

ηi ∼i.i.d . N (0,Ω) : unkn. vect. of random effects (size q)

Ω is the q × q var.– covariance matrix of the rand. eff.

εij ∼i.i.d . N (0, σ2) : residual errors

Parameters of the model to be determined : θ =
(
µ,Ω, σ2)

Stochastic Approximation of EM + Estimation/Maximization of
the conditional distributions with MCMC



NLMEM and SAEM : what’s done ?

To our knowledge, the following is working with MONOLIX :

ODE’s

Systems of ODE’s and Chains of ODE’s

Stochastic DE’s

Numerous validation on real applications :
PK/PD (1 or more compart.), viral dynamics models
oncology, etc

but the integration of PDE’s remains an open problem.

Some attempts here and there but essentially done by
transforming the PDE into a set of ODE’s.

Why ? ’Cause of the computational cost and polymorphism



The primitive idea ...

You want to keep the PDE to have the solution :

decouple PDE resolution and SAEM evaluation :

precompute solutions (as functions of parameters)

store them and call them when SAEM needs them

This is the classical Offline/Online concept

Offline step : very long computational time
Online step : “instantaneous”⇒ SAEM doable

Rk : there is still the problem of storage ... (balance v.s. cpu)



Precomputation

To evaluate quickly a function f , ...

... interpolate from precomputed values on a grid

For efficiency :

Interpolation should be easy/fast→ quadtree/octree

Mesh refined in “high variations” zones of f ...
... in a sense to be defined



Precomputation algorithm
Start with an hyper-rectangle (let’s say a “cube”) :

Cinit = ΠN
i=1[xmin,i , xmax ,i ]

Divide the “cube” and compute weigths of children

Choose a child (e.g. highest weight) and divide it

Iterate as needed

Can be donne in parallel. As such, doable for ∼ 5 parameters.
→ for more param, additional ideas are needed, cf next part



Reconnecting with PDE’s

MONOLIX is not able to deal with PDE output

Whole solution needs to be “reduced”

→ transformation into scalar time series

→ Rely on the knowledge about the PDE

→ Difficult to expect generalization for all PDE’s

→ Identifiability becomes even more crucial

Rk : reduction/transformation is also good for storage ...

But, still, some things are doable :o)



Description of the KPP model

We consider the classical reaction-diffusion PDE named after

Kolmogoroff, Petrovsky and Piscounoff (1937) 1.

∂tu −∇.(D∇u) = Ru(1− u),∀t > 0,∀x ∈ ∆ (3)

u(T0, x) = α1|x−x0|≤ε, and Neumann B.C. on ∆ (4)

1. Etude de l’equation de la diffusion avec croissance de la quantite de
matiere et son application a un probleme biologique. Bulletin de l’universite
d’Etat a Moscou. Section A, I(6) :1-26, 1937.



Properties of the KPP model

Maximum principle : ∀t > 0, 0 ≤ u(t , .) ≤ 1

Good model for front propagation

Speed := c = 2
√

RD, Front width := ω ∝
√

D
R

Define the “volume” of the invaded zone :

V (t) :=

∫
∆

u(t , x)dx (5)



Consequences on the volume

t

V(t)

transition time

slopes

transition duration

initial
size

Pract. identif. : Yes. 1D (up to symetry in x0), 2D (up to ∆)
PDE-SAEM algo used on time series of the volumes of
a population of individuals



Technical details

I.C. ε = 0.03 and α = 1.
Define the parameters’ space (medical appl.) : x0, R, D
0 ≤ x0 ≤ 1
7.2× 10−3 ≤ R ≤ 4.0× 10−2

2.5× 10−7 ≤ D ≤ 13.9× 10−7

Build 2 databases (see next slide) :
homogeneous : 1089 summits
heterogeneous : 500 summits



Technical details – Databases

Note the finer zones (compared to Left) on the Right.



Technical details - Populations

100 individuals in each population. Noise : 0%, 5%, 10%
Lognormal distribution of parameters.
101 points in time.



Results : Case (x0,R,D) – population errors

Theor E1 E2 E3
error error error

R 0.0245 0.0237 -3.3% 0.0234 -4.5% 0.0231 -5.7%
D 8.64e−7 8.67e−7 0.3% 8.79e−7 1.7% 9.62e−7 11%
x0 0.415 0.399 -3.9% 0.393 -5.3% 0.37 -11%
ωR 0.201 0.196 -2.5% 0.263 31% 0.253 26%
ωD 0.205 0.188 -8.3% 0.247 20% 0.395 93%
ωx0 0.254 0.244 -3.9% 0.241 -5% 0.616 143%

TABLE – Homogeneous grid : Column E1 : 0% noise. E2 (resp. E3)
refers to a population with a 5% (resp. 10%) noise.



Results : Case (x0,R,D) – population errors

Theor E1 E2 E3
error error error

R 0.0245 0.0245 0% 0.0241 -1.6% 0.0239 -2.4%
D 8.64e−7 8.31e−7 -3.8% 8.47e−7 -1.9% 8.66e−7 0.2%
x0 0.415 0.414 -0.2% 0.406 -2.1% 0.436 5%
ωR 0.201 0.197 -1.9% 0.238 18.4% 0.257 27.8%
ωD 0.205 0.191 -6.8% 0.238 16% 0.299 45.8%
ωx0 0.254 0.262 3.1% 0.247 -2.7% 0.290 14.1%

TABLE – Inhomogeneous grid : Column E1 : 0% noise. E2 (resp.
E3) refers to a population with a 5% (resp. 10%) noise.

Same quality with lower cost



Results : pred vs obs indiv params (100 ind), 10%
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Results : computational cost

“Exact” case Interpolation with Interpolation with
homogeneous
mesh

heterogeneous
mesh

Offline No offline computa-
tion

Mesh with n
segmentations,
(2n +1)2 points. For
5 segmentations,
1089 points

Mesh with n points.
Example with 500
points

Unit average CPU - 2.12s 2.12s
Offline total CPU - 38mn28s 17mn40s
Online SAEM, 106 KPP

evaluations
SAEM, 106 interpo-
lations

SAEM, 106 interpo-
lations

Unit average CPU 2s 4.5× 10−4s 5.1× 10−4s
Online total Cost ∼ 23 days 3 h 7mn30s 8mn30s
Total cost ∼ 23 days 3 h 45mn58s 26mn10s

TABLE – The number of calls of the solver in SAEM is about 106 for
this case. Note that this is sequential CPU time. The mesh generation
can be easily parallelized on many cores with an excellent scalability.
All details and results of this part in : Parameter estimation in
non-linear mixed effects models with SAEM algorithm :
extension from ODE to PDE. E. Grenier, V. Louvet & PV. M2AN,
48(5), pp. 1303-1329, 2014. HAL link.

http://hal.archives-ouvertes.fr/hal-00936373/en


Another test on a few real data w/ Pierre Gabriel
Starting point :
The contribution of age structure to cell population responses to
targeted therapeutics. P. Gabriel, S.P. Garbett, V. Quaranta, D.
R. Tyson and G. F. Webb. J. of Theor. Biology. 311(19). (2012)
Model :

∀t > 0,∀a > 0, ∂tp(t ,a) + ∂ap(t ,a) + β(a)p(t ,a) = 0 (6)

Initial condition : ∀a ≥ 0, p(0,a) = p0(a) (7)

B. C. : ∀t ≥ 0, p(t ,0) = 2(1− f )

∫ ∞
0

β(a)p(t ,a) da (8)

dQ(t)
dt

= 2f
∫ ∞

0
β(a)p(t ,a) da (9)

P(t) =

∫ ∞
0

p(t ,a) da (10)

N(t) = P(t) + Q(t) (11)



The data
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Experimental data − 3 indiv.

FIGURE – Typical profiles for a "population" of ... 3 individuals.



Parameters estimation with SAEM

Key ingredient from P. Gabriel et al. : one can take

β(a) = β0 Erfc
(

m − a
σ

)
, (12)

Parameter m can be fixed to 25.

Unknow parameters studied via SAEM : f ; β0, σ

We run SAEM only with these 3 individuals, even if this is not
statistically relevant.

However, note that there is a lot of points in time so we get
something :



Erlotinib 5000nM
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Experimental data V.S. solver (+ estim. param). Indiv. #1

s = 7.385
b = 0.137
f = 0.919
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Erlotinib 5nM

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

N
(t

)
Experimental data V.S. solver (+ estim. param). Indiv. #3

s = 8.000
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f = 0.031



Statistical check with 100 digital individuals



Statistical check with 100 digital individuals
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Trying to diminish the computational cost

Recall : previous approach limited to 5-6 parameters.
= "dimensional curse"

A possible choice is to make a SAEM method with an
approximate model fapp(k) which evolves during the SAEM
iterations k :

use kriging as the
interpolation (has a
variance !)
start from coarse kriging
and refine fapp(k) only
when needed along the
SAEM "exploration" of
the parameters’ space,
informed by the kriging
variance



KSAEM = SAEM + Kriging

Cannot be compared directly to the Part 1 Method :
if the SAEM algo is used many times on the same model :
can be better to pay for a costly offline step, once for all
if SAEM algo is used a few times : better to use KSAEM

By property of kriging :
very few points added in the basis/grid along KSAEM

For PDE models : can expect a drastic↘ of costly eval of f

Rigorous proof of convergence of KSAEM : open problem.
At least, numerical experiments so far show quite good
computations.



KSAEM illustrated on KPP

Same model as presented in Part 1.

SAEM : 9× 105 calls of f , 3 days on a laptop (C++ code)

KSAEM :
Start with 20 points in the kriging grid.

22 points then added during the KSAEM loop ...

... and 9.3× 105 fast interpolations via fapp

So : 9× 105 to be compared with 44 costly eval. of f !
CPU times : 3 days v.s. 1 minute !

What about the estimated parameters ? See next :



KSAEM illustrated on KPP

Parameters True values SAEM KSAEM
µλ 0.0236 0.0229 (0.009) 0.0259 (0.013)
µν (× 107) 8.195 8.6327 (4.058) 8.3869 (4.390)
µx0 0.4 0.4024 (0.107) 0.5615 (0.200)
ω2
λ 0.04 0.0391 (0.035) 0.1382 (0.143)
ω2
ν 0.04 0.0451 (0.050) 0.1688 (0.173)
ω2

x0
0.04 0.0426 (0.030) 0.0905 (0.113)

σ2
ε 0.05 0.0391 (0.035) 0.1383 (0.143)

TABLE – Simulation study with KPP model : results obtained from 100
repetitions, with N = 100 individuals with the exact SAEM and
KSAEM. Results are presented in means and standard deviation in
brackets.

All (tricky) details on KSAEM in : E. Grenier, C. Helbert, V. Louvet, A.
Samson, P.V. Population parametrization of costly black box
models using iterations between SAEM algorithm and kriging.
Computational and Applied Mathematics, March 2016. HAL link.

https://hal.archives-ouvertes.fr/hal-01224004


Conclusions

Summary
Use of SAEM population approaches ...
in the context of PDE (not just ODE).
Two methods : one pragmatical (quite easy
implementation) – offline grid
another a bit more tricky, but can be usefull – KSAEM
Illustrated and encouraging on KPP and Renewal equation

Perspectives
Applications to other models
Extensions to take into account full images
Rigorous proof of convergence of KSAEM
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