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Convex functions

A function f (·) is called convex if the line segment between any two
points on the graph of the function lies above the graph between the
two points i.e.

f (↵x + (1� ↵)y)  ↵f (x) + (1� ↵)f (y)

for all ↵ such that 0  ↵  1 and for all x , y 2 Rn.

A function f (·) is called concave if �f (·) is convex.
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Convex sets

A subset D of real vector space is called convex if D contains every
line segment whose endpoints belong to D, i.e.

↵x + (1� ↵)y 2 D for all x , y 2 D.
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Optimization problem

An optimization problem is the problem of finding the best solution from
all feasible solutions.

Claim (Special form)

Any optimization problem can be written in the following form :

8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0,
(P)

where x = (x
1

, ..., xn)>, S is a nonempty simple set in Rn,
f , g : Rn ! R are continuous functions.
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Optimization problem

Standard form of optimization
8
<

:

minimize f (x)
subject to hi (x) = 0, j = 1, ..., r

gj(x)  0, i = r + 1, ...,m

S = Rn; g(x) = max{h
1

(x), ..., hr (x),�h
1

(x), ...,�hr (x), gr+1

, ..., gm(x)}

8
<

:

minimize f (x)
subject to hi (x) = 0, j = 1, ..., r

gj(x)  0, i = r + 1, ...,m
,

8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0
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Optimization problem

Exercice 1. (linear programming)

Write the linear programming problem

8
<

:

maximize hc , xi
subject to Ax  b

x � 0

in the special form of (P).
f (·) =?, S =?, g(·) =?
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Optimization problem

D is a domain (all feasible solutions)

D = {x 2 Rn | x 2 S , g(x)  0}

f (·) is the objective function
8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0
,

⇢
minimize f (x)
subject to x 2 D.

(P)
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Optimal solutions

⇢
minimize f (x)
subject to x 2 D.

(P)

Local solution

A local solution y of (P) is defined as an element of D for which there
exists some � > 0 such that for all x 2 D where kx � yk � the expression

f (y)  f (x)

holds.

Global solution

An element z of D is called the global solution of (P) if

f (z)  f (x) for all x 2 D.
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Convex optimization

8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0
(P)

Definition

The problem (P) is called convex i↵ the following four conditions hold :

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.
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Convex optimization

Optimization problem
8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0
(P)

Properties

S , g are convex =)
Domain D = {x 2 Rn | x 2 S , g(x)  0} is convex.

If the problem (P) is convex then any local solution is the global
solution.
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Optimization problem

Exercice 2.

Show that the linear programming problem

8
<

:

maximize hc , xi
subject to Ax  b

x � 0

is convex after the definition of the convex optimization by the special
form of (P).
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Nonconvex optimization

Optimization problem
8
<

:

minimize f (x)
subject to x 2 S ,

g(x)  0
(P)

Definition

If at least one of the four conditions is violated

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.

then the optimization problem (P) can be Nonconvex.
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Classification of Nonconvex problems

Definition

If at least one of the four conditions is violated

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.

then the optimization problem (P) can be Nonconvex.

Convex maximization

Condition 1) is violated =)
⇢

maximize f (x)
subject to x 2 D.

(CM)
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Classification of Nonconvex problems

Definition

If at least one of the four conditions is violated

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.

then the optimization problem (P) can be Nonconvex.

Reverse Convex Minimization

Condition 4) is violated
g(x)  0 with g(x) concave , g

1

(x) � 0 with g
1

(x) = �g(x) convex

=)

8
<

:

minimize f (x)
subject to x 2 S

g
1

(x) � 0
(RCP)
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Classification of Nonconvex problems

Definition

If at least one of the four conditions is violated

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.

then the optimization problem (P) can be Nonconvex.

DC optimization

Condition 2) is violated
f (x) = f

1

(x)� f
2

(x) di↵erence of two convex functions =)
⇢

maximize f
1

(x)� f
2

(x)
subject to x 2 D

(DC )
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Global Optimization

Definition

If at least one of the four conditions is violated

1 minimization problem,

2 f is convex function,

3 S is convex set,

4 g is convex function.

then the optimization problem (P) can be nonconvex.

Global optimization

Condition 2) is violated
f (x) any continious nonconvex function =) Global Optimization

⇢
minimize f (x)
subject to x 2 D

or

⇢
maximize f (x)
subject to x 2 D

(GO)
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Global Optimization

Why Global Optimization ?

Nonconvex optimization problems can have a large number of local
minima which makes the problem of finding the global solution
di�cult.

Finding the global minimum of a function is far more di�cult:
analytical methods are frequently not applicable, and the use of
numerical solution strategies often leads to very hard challenges.
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Piecewise convex function

Definition

A function F : Rn ! R is called a piecewise convex function if it can be
decomposed into :

F (x) = min{f
1

(x), f
2

(x), ..., fm(x)},

where fj : Rn ! R are convex functions for all j 2 M = {1, 2...,m}.
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Piecewise convex function

Convex functions Piecewise convex function
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Space of Piecewise Convex Functions

Remark

Notice first that real valued convex and concave functions are particular
cases of piecewise convex functions,
since a piecewise convex function is

convex when there is only one convex piece m = 1;

concave when all functions fj are a�ne.
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Space of Piecewise Convex Functions

Proposition 1 (Continuity of Piecewise Convex Function)

A function
F (x) = min{fj(x) | j 2 M}

is continuous, if

each fj is continuous and

the index set M is finite
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Operations on Piecewise Convex Functions

Proposition 2

Let G (·),H(·) be two piecewise convex functions, then

G + ↵ for ↵ 2 R,
G + H,

�G for � > 0,

G+ = max{0,G},
G� = min{0,G},
max{G ,H},
min{G ,H},

are also piecewise convex.
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Operations on Piecewise Convex Functions

Let two functions’ representations be

G (x) = min{gi (x) | i = 1, ..., n},H(x) = min{hj(x) | j = 1, ...,m}.

Proof of Proposition 2

G (x) + ↵ = F (x) = min{fk(x) | k = 1, ..., n} with fk(x) = gk(x) + ↵;

addition (G + H)(x) = F (x) = min{fk(x) | k = 1, ..., n ⇥m} with
fk(x) = fij(x) = gi (x) + hj(x);

positive scalar multiplication

�G (x) = F (x) = min{fk(x) | k = 1, .., n}, with fk(x) = �gk(x);

operation ”min”

min{G (x),H(x)} = F (x) = min{fk(x) | k = 1, .., n +m} with

fk(x) =

⇢
gk(x) k = 1, .., n
hk�n(x) k = n + 1, ..., n +m

In all cases, functions fk(·) are convex, therefore F (x) is piecewise convex.
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Operations on Piecewise Convex Functions

Exercice 3

Prove that G+(x),G�(x) are piecewise convex.

Exercice 4 (Homework)

Prove that max{G (x),H(x)} is a piecewise convex and give its rule of
calcul.
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Piecewise a�ne approximation

Let us consider a concave function �(·).

A�ne majorant

For the concave function �(x) at any y there is an a�ne majorant `y (x)
such that ⇢

�(x)  `y (x) for all x 2 Rn

�(y) = `y (y)

Example of a�ne majorant

If �(x) is di↵erentiable then due to the following inequality
�(x)  �(y) + hr(y), x � yi for all x , y we have

`y (x) = �(y) + hr�(y), x � yi
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Piecewise a�ne approximation

A�ne majorants

A set of points y1, . . . yN gives us a�ne majorants `
1

(x), . . . , `N(x).

Piecewise a�ne majorant

Any concave function �(·) can be approximated by a piecewise a�ne
function L(·) :

�(x) ⇡ L(x) = min{`j(x) | j = 1, ...,N}

such that ⇢
�(x)  L(x) for all x 2 Rn

�(y j) = L(y j) for all j = 1, . . .N
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Piecewise a�ne approximation

�(x) ⇡ L(x) = min{`j(x) | j = 1, ...,N}

Powerful tool in convex optimization

⇢
maximize �(x)
subject to x 2 D

⇢
minimize ��(x)
subject to x 2 D

where �(·) is concave, D is convex.
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From A�ne Majorant to Convex Majorant

Remark

Unfortunately, piecewise a�ne approximation does not work for nonconvex
functions, so our aim is to extend a�ne approximation to convex
approximation to deal with nonconvex cases.
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Convex Majorant

Let us consider a nonconvex function  (·).

Definition

A convex function fy (x) is a convex majorant to a nonconvex function
 (x) at y i↵ ⇢

 (x)  fy (x) for all x 2 Rn

 (y) = fy (y)
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Classes of functions that have convex majorant

Class of DC functions

For a function decomposed as a di↵erence of convex functions
 (x) = f

1

(x)� f
2

(x), its convex majorant is

fy (x) = f
1

(x)� (f
2

(y) + hrf
2

(y), x � yi);

Class of Lipschitz functions

Lipschitz functions with constant L:

|  (x)�  (y) | L kx � yk for all x , y 2 Rn

possess a convex majorant also.
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Classes of functions that have convex majorant

Exercice 5.

Find a convex majorant for a Lipschitz function.
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Global Optimization Problem

Nonconvex optimization problem

Let us consider the following nonconvex problem :

⇢
maximize  (x)
subject to x 2 D

(GO)

where D ⇢ Rn is convex,  : Rn ! R is a continuous and nonconvex
function.

Assumption 1

Let us assume that at any y 2 D there exists a convex majorant fy (·) to
 (·).
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Global Optimization Problem

Initialization

Suppose that y0 2 D be a starting point.
Denote by fk(x) a convex majorant fyk (x) to  (x) for k = 0, 1, ...

Method

Approximation(  ,D, y0 )

1. Set F
0

(x) = f
0

(x) and k = 1 ;

2. Define yk as a solution to

⇢
maximize Fk�1

(x)
subject to x 2 D

(PCMP)

3. Set fk(x) = fyk (x) and

Fk(x) = min{Fk�1

(x), fk(x)};

4. if (Fk�1

(yk)�Fk(yk))  " then STOP else k = k+1; Goto 2
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Global Optimization Problem

Assumption 2 (Piecewise Convex Maximization Problem)

Let us assume that the piecewise convex maximization problem (PCMP)
can be solved for each iteration k = 1, 2, ...

Proposition

Let D be a compact set,  (·) be a continuous function on D and
Assumption 1, Assumption 2 hold.
Then for a sequence {yk} generated by the above method

i) lim
k!+1

 (yk) = lim
k!+1

Fk�1

(yk) = ⇣⇤

with an estimation 0  ⇣⇤ �  (yk) = Fk�1

(yk)�  (yk);

ii) lim
k!+1

d(yk ,Z ⇤) = 0.

where ⇣⇤ and Z⇤
stand for the global maximal value and the set of global optimal solutions of (PCMP).

I. Tseveendorj (Lab. of Math. in Versailles) CIMPA 2021 Mongolia July 5, 2021 36 / 38



Global Optimization Problem

Sketch of the proof

By definition, we have F
0

(x) �  (x) for all x 2 D;
thus F

0

(y1) �  (y1) and

max{F
0

(x) | x 2 D} � ⇣⇤ = max{ (x) | x 2 D}.

By Assumption 1. there exists f
1

(·), such that

⇢
 (x)  f

1

(x) for all x 2 D
 (y1) = f

1

(y1)

Now, for any x 2 D

⇢
f
1

(x) �  (x)
F
0

(x) �  (x)
=) F

1

(x) = min{f
1

(x),F
0

(x)} �  (x).
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Global Optimization Problem

Sketch of the proof

By definition, we get F
0

(x) � F
1

(x) � . . .Fk(x) �  (x) for all x . Thus,

Fk�1

(yk) � Fk(y
k) � ⇣⇤ �  (yk) =) 0  ⇣⇤� (yk) = Fk�1

(yk)� (yk)

Numerical sequence Fk�1

(yk) is decreasing and bounded below, that
proves the existence of a limit :

lim
k!+1

Fk�1

(yk).

The compactness of D provides a subsequence yks ! z .
For all l = 1, . . . k � 1,Fk(y l) =  (y l) and for all x 2 D,Fk(x) �  (x).

0  lim
s!+1

(⇣⇤ �  (yks ))  lim
s!+1

(Fks (y
ks )�  (yks )) = 0 ) ⇣⇤ =  (z).
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