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Piecewise convex functions

EXERCICES from Lecture 1 |
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Operations on Piecewise Convex Functions

Prove that G (x), G~ (x) are piecewise convex.

o GT(x) =?

G+(X) = max{O, G(X)} = max{gf(x)ag;r(x)v 7gr—;i_(x)}7
\

where g7 (x) are convex. l
o G (x)=?

G (x) = min{0, G(x)} = min{0, g1(x), ..., gn(x)}.

o
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Operations on Piecewise Convex Functions

G(x) = min{gi(x) | i =1,...,n}, H(x) = min{hj(x) | j =1, ..., m}.

Exercice 4 (Homework)

Prove that max{G(x), H(x)} is a piecewise convex and give its rule of
calcul.

\

Rule

max{G(x), H(x)} =
max {min{gi(x) | i =1,...,n},min{hj(x) | j =1,...,m}}
min {max{gi(x), hj(x)}| i=1,...n,j = ]hxrﬁ

max{gi(x), hj(x)} are convex. v Y P
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Piecewise affine approximation

Let us consider a concave function ¢(+).

Affine majorant
For the concave function ¢(
such that

x) at any y there is an affine majorant ¢, (x)

y(¥) J ",

Example of affine majorant
If ¢(x) is differentiable then due to the following inequality

P(x) < ¢(y) + V(y),x 2 y) for all x,y we have

6,() = 6(y) + V(). x —P
\_—/
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Piecewise affine approximation

Affine majorant
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Piecewise affine approximation

Piecewise affine approximation in convex optimization

{ maximize  ¢(x)

subjectto x € D

where ¢(+) is concave, D is convex.
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Piecewise affine approximation

Solving convex optimization by Piecewise affine approximation
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From Affine Majorant to Convex Majorant

Unfortunately, piecewise affine approximation does not work for nonconvex
functions, so our aim is to extend affine approximation to convex
approximation to deal with nonconvex cases.

Yine ) noncmvex
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Convex Majorant

Let us consider a nonconvex function 9(-).

A convex function f,(x) is a convex majorant to a nonconvex function

P(x) at y iff
{ P(x) < fy(x) forall x € R"
= fy(y)

73,[ x)  comvex

7 ) nonclmvpx

Qe f————
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Classes of functions that have convex majorant

Class of DC functions

For a function decomposed as a difference of convex functions
P(x) = f(x) — f2(x), its convex majorant is

F(x) = i(x) - (By) + Vh().x—y)i  CoaV L |

Class of Lipschitz functions

Lipschitz functions with constant L:

| () =d(y) [S Lx =y forall x,y € R

possess a convex majorant also.
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Classes of functions that have convex majorant

Find a convex majorant for a Lipschitz function. \
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Global Optimization Problem

Nonconvex optimization problem

Let us consider the following nonconvex problem :

{ maximize  ¥(x) (GO)

subjectto x €D

where D C R" is convex, 1 : R” — R is a continuous and nonconvex
function.

Let us assume that at any y € D there exists a convex majorant f,(-) to

¥(-)-

A\
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Global Optimization Problem

Initialization

Suppose that y° € D be a starting point.
Denote by fi(x) a convex majorant f,, (x) to 1(x) for k =0,1, ...

v

Method

Approximation( 1, D,y? )
1. Set Fo(x) =fo(x) and k=1 ;
2. Define yk as a solution to

maximize Fr—1(x)
{ subject to x&€D Eie)

3. Set fi(x)=f,(x) and
Fi(x) = min{Fx_1(x), f(x)};

4. if (Fe_1(y*)— Fk(y*¥)) < e then STOP else k = k+1; Goto 2
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Global Optimization Problem

Assumption 2 (Piecewise Convex Maximization Problem)

Let us assume that the piecewise convex maximization problem (PCMP)
can be solved for each iteration k = 1,2, ...

v

Let D be a compact set, ¢(-) be a continuous function on D and
Assumption 1, Assumption 2 hold.
Then for a sequence {y¥} generated by the above method

) km w(yk)— I|m Fi_i(y®)=¢*

with an estimation 0 < ¢* — ¥(y¥) = Fr_1(y*) — ¥(y*);

i) lim d(y*,Z*) =0.

k—+00

where ¢* and Z* stand for the global maximal value and the set of global optimal solutions of (PCMP).
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Global Optimization Problem

Sketch of the proof
By definition, we have Fy(x) > ¥(x) for all x € D;
thus Fo(y*') > ¢(y*') and

max{Fo(x) | x € D} > ¢* = max{y(x) | x € D}.
By Assumption 1. there exists fi(-), such that

{ P(x) < fA(x)forall xe D
byt =h(yh)

Now, for any x € D

I. Tseveendorj (Lab. of Math. in Versailles) CIMPA 2021 Mongolia July 7, 2021



Global Optimization Problem
Sketch of the proof

By definition, we get Fo(x) > F1(x) > ... Fx(x) > (x) for all x. Thus,
AN
Fiea(y) > Ay*) > ¢ 2 904 =0 < = o) = B albfhull ")\

(S

Numerical sequence %}/"éis decreasing and bounded below, that
proves the existence of a :

lim  Fe_1(y%).
k—iToo k l(yﬁ) e (D
The compactness of D provides a subsequence y* —»
Forall I=1,...k —1,F(y") = ¥(y') and for all x € T, Fx(x) > ¥(x).
"\A) l—~—-———)

0< lim (CF =y ) < lim (Fi(y*) —v(y*)) = 0= ¢ = ¢(2).

s—+400 s—+o00
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Piecewise Convex Maximization

Piecewise convex maximization :
We are given a convex compact D and we consider the following problem:

{ maximize  F(x) (PCMP)

subjectto x € D

v

This problem is called piecewise convex maximization (PCMP) when its
objective function F(-) is piecewise convex.
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Piecewise Convex Maximization

The purpose of this part

is to establish necessary and sufficient optimality condition for the
piecewise convex maximization problem (PCMP).
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Global Optimality Conditions for Convex Maximization

Convex Maximization :

First, we consider the well known convex maximization problem :

{ maximize  f(x) (cm)

subjectto x €D
where D is convex compact and f(-) is a convex function.
It is clear that (CM) is a particular case of (PCMP) when m =1 (there is

>

only one piece).
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Geometry of Global Optimality

Lebesgue's set of a function () at level «

Li(a) ={x]| f(x) < a}.

Given a point z € D and a continuous function f(-) for maximizing.

Observation

Lebesgue's set L¢(f(z)) of a function f(-) at level f(z) contains all points
no better than z.

IRGORE | £ ¢ £(01
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Global Optimality Conditions for Convex Maximization

Show that Lebesgue's set of a convex function f(-)
Lr(a) = {x|f(x) < a}

is convex at any level o € R.
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Geometry of Global Optimality

Global Optimality Conditions

Clearly, the point z is a global maximum of (CM) iff all points of the
domain D are simply no better than z.

It means that z € D solves (CM) globally if and only if

D C Ls(f(2)).

W‘

L
One should check inclusion of two convex sets !
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Subdifferential, Normal cone

Let 7(-) be a convex function. I~ .
Definition (Subdifferential)

of(y) ={y" | f(x) —f(y) > ", x —y) for all x

Let D be a convex set.

Definition ( Normal cone)

N(D,y) = {y | ¢*,x —y)< 0 for all x € D.

\z .
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Global Optimality Conditions for Convex Maximization

Theorem [Journal of the Mongolian Math. Society, 1998]

Assume that there exists a v € R” such that f(v) < f(z) for a feasible
point z.

Then a necessary and a sufficient condition for z € D to be a global
maximum for (CM) is:

of(y) AN(D,y) # {0}

for all y such that f(y) = f(2). (gN5)

v
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Global Optimality Conditions for Convex Maximization

Proof (necessary)

Let z € D solve (CM) globally, in other words
f(z) > f(x) for all x € D.
Then for all y such that f(y) = f(z) the following chain
05 £ - FR) = [0 ) > b x -y,

hold for all Z* c 0f(y), K* # 0 and for all x € D.

The chain implies
y* € 0f(y) N N(D, y).
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Global Optimality Conditions for Convex Maximization

Proof (sufficient)

Suppose that the condition (gNS) holds, but z is not the global maximum
of (CM). Thus, there is a point u € D such that f(u) > f(2).
We consider a segment between two pointsl.t.l’7 \(}

[l(a):av—i—(l—a)u,} 0<a<l1

where v is the point assumed to exist such that ﬁ@z! > f(v).

f(u) > f(z) > f(v) implies that there is ag G]O 1 'such that
f(y(ao)) = f(2).

061~ v(00)) = (16, “FL* — (o))
— >

1255 (F(v) — F(¥(00)) % 0;

proves that yg5 ¢ N(D, y(ag)) for all yg € 9f(y(a0)) \ {0}.
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Global Optimality Conditions for Convex Maximization

Exercice 7
We consider (CM) in R? with

f(x1,x2) = max{2x1 + 3x2,3x1 — x2, —2x1 + X2, —2x1 — 6x2}

D={xeR?|-3<x<3,i=1,2}

Apply the optimality conditions (gNS) for point (3, —3).
ol AN (D,4)4 (o] oy P
¥y - H}): f(2) -
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Global Optimality Conditions for Convex Maximization

Exercice 7
f(x1,x2) = max{2x1 + 3x2,3x1 — X2, —2x1 + X2, —2x1 — 6x2}

D={xecR?| -3<x<3,i=1,2}

N

2 (3, "5) ol Lom

v
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Global Optimality Conditions for Convex Maximization

Exercice 8
We consider (CM) in R? with

f(x1,x2) = max{2x1 + 3x2,3x1 — x2, —2x1 + X2, —2x1 — 6x2}

D={xeR?|-3<x<3,i=1,2}
Apply the optimality conditions (gNS) for points (3, 3).
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Global Optimality Conditions for Convex Maximization

Exercice 8
f(x1,x2) = max{2x1 + 3x2,3x1 — X2, —2x1 + X2, —2x1 — 6x2}

D={xcR?| -3<x<3,i=1,2}

.
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Global Optimality Conditions for Convex Maximization

Exercice 9
We consider (CM) in R? with

f(x1,x2) = max{2x1 + 3x2,3x1 — x2, —2x1 + X2, —2x1 — 6x2}

D={xeR?|-3<x<3,i=1,2}
Apply the optimality conditions (gNS) for points (—3, —3).
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Global Optimality Conditions for Convex Maximization

Exercice 9
f(x1,x2) = max{2x1 + 3x2,3x1 — X2, —2x1 + X2, —2x1 — 6x2}

D={xecR?| -3<x<3,i=1,2}

N
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Global Optimality Conditions for Convex Maximization
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