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Piecewise convex functions

EXERCICES from Lecture 1
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Operations on Piecewise Convex Functions

G (x) = min{gi (x) | i = 1, ..., n},

Exercice 3

Prove that G+(x),G�(x) are piecewise convex.

Proofs

G+(x) =?

G+(x) = max{0,G (x)} = max{g+

1

(x), g+

2

(x), ..., g+

n (x)},

where g+

i (x) are convex.

G�(x) =?

G�(x) = min{0,G (x)} = min{0, g
1

(x), ..., gn(x)}.
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Operations on Piecewise Convex Functions

G (x) = min{gi (x) | i = 1, ..., n},H(x) = min{hj(x) | j = 1, ...,m}.

Exercice 4 (Homework)

Prove that max{G (x),H(x)} is a piecewise convex and give its rule of
calcul.

Rule

max{G (x),H(x)} =
max {min{gi (x) | i = 1, ..., n},min{hj(x) | j = 1, ...,m}}
min {max{gi (x), hj(x)} | i = 1, ..., n, j = 1, ...,m},

max{gi (x), hj(x)} are convex.
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Piecewise a�ne approximation

Let us consider a concave function �(·).

A�ne majorant

For the concave function �(x) at any y there is an a�ne majorant `y (x)
such that ⇢

�(x)  `y (x) for all x 2 Rn

�(y) = `y (y)

Example of a�ne majorant

If �(x) is di↵erentiable then due to the following inequality
�(x)  �(y) + hr(y), x � yi for all x , y we have

`y (x) = �(y) + hr�(y), x � yi
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Piecewise a�ne approximation

A�ne majorant
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Piecewise a�ne approximation

Piecewise a�ne approximation in convex optimization
⇢

maximize �(x)
subject to x 2 D

where �(·) is concave, D is convex.
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Piecewise a�ne approximation

Solving convex optimization by Piecewise a�ne approximation
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From A�ne Majorant to Convex Majorant

Remark

Unfortunately, piecewise a�ne approximation does not work for nonconvex
functions, so our aim is to extend a�ne approximation to convex
approximation to deal with nonconvex cases.
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Convex Majorant

Let us consider a nonconvex function  (·).

Definition

A convex function fy (x) is a convex majorant to a nonconvex function
 (x) at y i↵ ⇢

 (x)  fy (x) for all x 2 Rn

 (y) = fy (y)
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Classes of functions that have convex majorant

Class of DC functions

For a function decomposed as a di↵erence of convex functions
 (x) = f

1

(x)� f
2

(x), its convex majorant is

fy (x) = f
1

(x)� (f
2

(y) + hrf
2

(y), x � yi);

Class of Lipschitz functions

Lipschitz functions with constant L:

|  (x)�  (y) | L kx � yk for all x , y 2 Rn

possess a convex majorant also.
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Classes of functions that have convex majorant

Exercice 5.

Find a convex majorant for a Lipschitz function.
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Global Optimization Problem

Nonconvex optimization problem

Let us consider the following nonconvex problem :

⇢
maximize  (x)
subject to x 2 D

(GO)

where D ⇢ Rn is convex,  : Rn ! R is a continuous and nonconvex
function.

Assumption 1

Let us assume that at any y 2 D there exists a convex majorant fy (·) to
 (·).
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Global Optimization Problem

Initialization

Suppose that y0 2 D be a starting point.
Denote by fk(x) a convex majorant fyk (x) to  (x) for k = 0, 1, ...

Method

Approximation(  ,D, y0 )

1. Set F
0

(x) = f
0

(x) and k = 1 ;

2. Define yk as a solution to

⇢
maximize Fk�1

(x)
subject to x 2 D

(PCMP)

3. Set fk(x) = fyk (x) and

Fk(x) = min{Fk�1

(x), fk(x)};

4. if (Fk�1

(yk)�Fk(yk))  " then STOP else k = k+1; Goto 2
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Global Optimization Problem

Assumption 2 (Piecewise Convex Maximization Problem)

Let us assume that the piecewise convex maximization problem (PCMP)
can be solved for each iteration k = 1, 2, ...

Proposition

Let D be a compact set,  (·) be a continuous function on D and
Assumption 1, Assumption 2 hold.
Then for a sequence {yk} generated by the above method

i) lim
k!+1

 (yk) = lim
k!+1

Fk�1

(yk) = ⇣⇤

with an estimation 0  ⇣⇤ �  (yk) = Fk�1

(yk)�  (yk);

ii) lim
k!+1

d(yk ,Z ⇤) = 0.

where ⇣⇤ and Z⇤
stand for the global maximal value and the set of global optimal solutions of (PCMP).
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Global Optimization Problem

Sketch of the proof

By definition, we have F
0

(x) �  (x) for all x 2 D;
thus F

0

(y1) �  (y1) and

max{F
0

(x) | x 2 D} � ⇣⇤ = max{ (x) | x 2 D}.

By Assumption 1. there exists f
1

(·), such that

⇢
 (x)  f

1

(x) for all x 2 D
 (y1) = f

1

(y1)

Now, for any x 2 D

⇢
f
1

(x) �  (x)
F
0

(x) �  (x)
=) F

1

(x) = min{f
1

(x),F
0

(x)} �  (x).
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Global Optimization Problem

Sketch of the proof

By definition, we get F
0

(x) � F
1

(x) � . . .Fk(x) �  (x) for all x . Thus,

Fk�1

(yk) � Fk(y
k) � ⇣⇤ �  (yk) =) 0  ⇣⇤� (yk) = Fk�1

(yk)� (yk)

Numerical sequence Fk�1

(yk) is decreasing and bounded below, that
proves the existence of a limit :

lim
k!+1

Fk�1

(yk).

The compactness of D provides a subsequence yks ! z .
For all l = 1, . . . k � 1,Fk(y l) =  (y l) and for all x 2 D,Fk(x) �  (x).

0  lim
s!+1

(⇣⇤ �  (yks ))  lim
s!+1

(Fks (y
ks )�  (yks )) = 0 ) ⇣⇤ =  (z).
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Piecewise Convex Maximization

Piecewise convex maximization :

We are given a convex compact D and we consider the following problem:

⇢
maximize F (x)
subject to x 2 D

(PCMP)

This problem is called piecewise convex maximization (PCMP) when its
objective function F (·) is piecewise convex.
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Piecewise Convex Maximization

The purpose of this part

is to establish necessary and su�cient optimality condition for the
piecewise convex maximization problem (PCMP).
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Global Optimality Conditions for Convex Maximization

Convex Maximization :

First, we consider the well known convex maximization problem :

⇢
maximize f (x)
subject to x 2 D

(CM)

where D is convex compact and f (·) is a convex function.

Remark

It is clear that (CM) is a particular case of (PCMP) when m = 1 (there is
only one piece).
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Geometry of Global Optimality

Lebesgue’s set of a function f (·) at level ↵

Lf (↵) = {x | f (x)  ↵}.

Given a point z 2 D and a continuous function f (·) for maximizing.

Observation

Lebesgue’s set Lf (f (z)) of a function f (·) at level f (z) contains all points
no better than z .
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Global Optimality Conditions for Convex Maximization

Exercice 6

Show that Lebesgue’s set of a convex function f (·)

Lf (↵) = {x | f (x)  ↵}

is convex at any level ↵ 2 R.
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Geometry of Global Optimality

Global Optimality Conditions

Clearly, the point z is a global maximum of (CM) i↵ all points of the
domain D are simply no better than z .

It means that z 2 D solves (CM) globally if and only if

D ⇢ Lf (f (z)).

One should check inclusion of two convex sets !

I. Tseveendorj (Lab. of Math. in Versailles) CIMPA 2021 Mongolia July 7, 2021 26 / 37



Subdi↵erential, Normal cone

Let f (·) be a convex function.

Definition (Subdi↵erential)

@f (y) = {y⇤ | f (x)� f (y) � hy⇤, x � yi for all x

Let D be a convex set.

Definition ( Normal cone)

N(D, y) = {y⇤ | hy⇤, x � yi 0 for all x 2 D.
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Global Optimality Conditions for Convex Maximization

Theorem [Journal of the Mongolian Math. Society, 1998]

Assume that there exists a v 2 Rn such that f (v) < f (z) for a feasible
point z .
Then a necessary and a su�cient condition for z 2 D to be a global
maximum for (CM) is:

@f (y)
T
N(D, y) 6= {0}

for all y such that f (y) = f (z).
(gNS)
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Global Optimality Conditions for Convex Maximization

Proof (necessary)

Let z 2 D solve (CM) globally, in other words

f (z) � f (x) for all x 2 D.

Then for all y such that f (y) = f (z) the following chain

0 � f (x)� f (z) = f (x)� f (y) � hy⇤, x � yi

hold for all y⇤ 2 @f (y), y⇤ 6= 0 and for all x 2 D.
The chain implies

y⇤ 2 @f (y) \ N(D, y).
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Global Optimality Conditions for Convex Maximization

Proof (su�cient)

Suppose that the condition (gNS) holds, but z is not the global maximum
of (CM). Thus, there is a point u 2 D such that f (u) > f (z).
We consider a segment between two points u, v ,

y(↵) = ↵v + (1� ↵)u, 0  ↵  1

where v is the point assumed to exist such that f (z) > f (v).
f (u) > f (z) > f (v) implies that there is ↵

0

2]0, 1[ such that
f (y(↵

0

)) = f (z).

hy⇤
0

, u � y(↵
0

)i=
D
y⇤
0

, y(↵0

)�↵
0

v
1�↵

0

� y(↵
0

)
E

� ↵
0

1�↵
0

(f (v)� f (y(↵
0

))) > 0

proves that y⇤
0

/2 N(D, y(↵
0

)) for all y⇤
0

2 @f (y(↵
0

)) \ {0}.
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Global Optimality Conditions for Convex Maximization

Exercice 7

We consider (CM) in R2 with

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}

Apply the optimality conditions (gNS) for point (3,�3).
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Global Optimality Conditions for Convex Maximization

Exercice 7

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}
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Global Optimality Conditions for Convex Maximization

Exercice 8

We consider (CM) in R2 with

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}

Apply the optimality conditions (gNS) for points (3, 3).
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Global Optimality Conditions for Convex Maximization

Exercice 8

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}
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Global Optimality Conditions for Convex Maximization

Exercice 9

We consider (CM) in R2 with

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}

Apply the optimality conditions (gNS) for points (�3,�3).
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Global Optimality Conditions for Convex Maximization

Exercice 9

f (x
1

, x
2

) = max{2x
1

+ 3x
2

, 3x
1

� x
2

,�2x
1

+ x
2

,�2x
1

� 6x
2

}

D = {x 2 R2 | �3  xi  3, i = 1, 2}
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Global Optimality Conditions for Convex Maximization

summary
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