Introduction to Integer Linear Programming,
reformulation and decomposition

Sandra Ulrich Ngueveu
CIMPA School 2021: July 6th - 8th, 2021

Université de Toulouse - Toulouse INP - Laboratory LAAS-CNRS
ngueveu@laas.fr

1

You already know

- modeling with continuous variables and linear constraints
- basic facts about polyhedra
- (how the simplex algorithm works)

- (a bit about linear programming duality)

Goals of this course

We plan to

- introduce you to the basics of (Mixed) Integer Linear
Programming (part 1)

- Illustrate how MILP can be used to solve Mixed Integer
Nonlinear Problems via piecewise linear approximation
(part 2)

- Introduce you to principles of the column generation and
branch-and-price algorithms (part 3)

With the aim of

- expanding your modeling and solving capabilities

Part 1: basics

Introduction

An illustrative example

From linear to integer linear programming
Key differences
Combinatorial explosion
Complexity ?

Branch-and-Bound (divide and conquer)

Valid inequalities

Introduction

(Mixed) Integer linear programming

We are interested in optimization problems that can be
modeled as follows:

n2 #+ 0
min f(x) (1) nNt=0|nt#0
- linearf, g ILP MILP
nonlinear f,g | INLP MINLP

gx) <o ()
xeX,XCR"xz"? (3)

Numerous fields of application

Vi "/ o=

/ﬂ) W qfes ',‘
)Q =

An illustrative example

Problem (P): cement manufacturing

Cement A CementB
selling price (coins) 100 110
duration per ton in the industrial oven (min) | 100 120
duration per ton at the grinding station (min) | 50 200

The industrial oven is available 590 minutes per day. The grinding
station is available 750 minutes per day. What quantity cement of
each type should we produce per day to maximise the earnings ?

Variables Objective-function
Constraints Domain
Resulting mathematical model ? 6

Problem (P): cement manufacturing

Graphical representation

set of feasible solutions ?
polyhedron (convex) ?
extremal vs interior points ?

optimal solution ?

Two classical families of LP solution methods

A B
o g T 0 — . D
T N
s

Interior point methods Simplex method

8

Linear programming

n
min Z CiX; (4)
=1
S.t.

A1 X1 + ... + G jXj + ... + Ap jXp < bj, V| € {1!’?’7} (5)
x; eR, Vie{l.n} (6)

where ¢;, b;, a;; are scalars

Convenience of LP: Local optimum = global optimum

Limits: To be modelled with an LP, the consequences of the
decisions modelled by the variables have to be verify

- additivity
- proportionality
- divisibility 9

From linear to integer linear
programming

From linear to integer linear programming
Key differences
Combinatorial explosion
Complexity ?

Branch-and-Bound (divide and conquer)

10

Difference between the discrete and the continuous case

Problem (P1) = (P) + new rules:

- cements A and B must be stored in separate bags of 1kg
- each bag used must be full at the end of each day

(P1) min100x4 + 110xg ~ (7)
st.

100x,4 + 120x5 < 590 (8)
50x, + 200xg < 750 (9)
Xa,Xg € N (10)

- The optimal solution of (P) is not
feasible for(P1)

- The location of the optimal
solution of (P1) is not obvious

Problem (P1): cement manufacturing with storage in 1 kgs bags

Graphical representation of problem (P1)

set of feasible solutions ?
polyhedron (convex) ?
extremal vs interior points ?

optimal solution ?

12

Can’t we just round LP solutions to nearest integers ?

Why not solve the LP relaxation and round the fractionnal
up/down to get the required integer solution?

optimality is not guaranteed feasbility is not guaranteed

s
ss
\E

Problem (P1) Problem (P2)

= (P1) U{xq + 5x; > 11} .

Combinatorial explosion

The set of feasible solutions is finite. Can't we simply
enumerate all of them to identify the best one ?

The Traveling Salesman Problem (TSP)

- For 3 nodes; how many solutions possible ?
- For 5 nodes, how many solutions possible ?
- For 20 nodes how many solutions possible ?
/% - How long to find the best solution for 25 task with a
sl |LsNe computer able to evaluate 1 billion solutions per
N second ?
- How many such computers to keep a similar

computing time if one additional node is added ? two
additional tasks ?

14

Combinatorial explosion

"Brute-Force” Method: O(n!) solutions

20 nodes = 1e' solutions
“ZB(.
NN

D

Nodes

15
Combinatorial explosion

"Brute-Force” Method: O(n!) solutions

20 nodes = 1e' solutions

/% - Proc. 3GHz: 3 op / nano second
B = 5 C

NaN
Nodes Proc. 3 GHz
10 1/100 seconds
15 1 hour
19 1year
27 8x age of univ

Combinatorial explosion

"Brute-Force” Method: O(n!) solutions

20 nodes = 1e' solutions

/ - Proc. 3GHz: 3 op / nano second
B \\’/- € - Proc. Planck: 1 op / Planck time (5.39 x 10~**)s

D

Nodes Proc. 3 GHz Proc. Planck

10 1/100 seconds

15 1 hour

19 1year

27 8x age of univ

35 ? 5/1000 seconds

40 ? 12 years

50 ? 4000x age of univ.

15
Combinatorial explosion

"Brute-Force” Method: O(n!) solutions

20 nodes = 1e' solutions

- Proc. 3GHz: 3 op / nano second

- Proc. Planck: 1 op / Planck time (5.39 x 10~%)s

- //P. Planck : fill the universe with Planck Proc. of Tmm?

Nodes Proc. 3 GHz Proc. Planck / [P. Planck
10 1/100 seconds
15 1 hour
19 1year
27 8x age of univ
35 ? 5/1000 seconds
40 ? 12 years
50 ? 4000x age of univ.
90 ? ?

=Theoretical analysis of classes of problems to reduce their
search space -

Combinatorial explosion

"Brute-Force” Method: O(n!) solutions
20 nodes =~ 1e' solutions
/B - Proc. 3GHz : 3 op / nano second
@— | _—OC - Proc. Planck: 1 0p / Planck time (5.39 x 10—**)s
y-. p / ()

2 - //P. Planck : fill the universe with Planck Proc. of Tmm?3

Nodes Proc. 3 GHz Proc. Planck / /P. Planck
10 1/100 seconds
15 1 hour
19 1year
27 8x age of univ
35 ? 5/1000 seconds
40 ? 12 years
50 ? 4000x age of univ. | time of Planck
90 ? ? 3x age of univ.

=Theoretical analysis of classes of problems to reduce their
search space

15

Complexity ?

The complexity of a problem corresponds to the complexity of
the best algorithm able to solve it.

Problems for which verifying the feasibility of a given solution
Is polynomial are generally classified into two classes:

- ones that can be solved optimally with a polynomial
algorithm (textcolorblueclass P)

- ones that can require an exponential computing time to
solve in the worst case (class NP)

Complexity theory, in particular the notions of
NP-completeness and NP-hardness, leads to a better
understanding as to why certain classes of problems are still
not efficiently solved.

Sometimes, adding a small change in constraints or variables
Is sufficient to move a problem from polynomial to NP-hard.

The assignment problem . o -
Consider n products and n machines. Manufacturing i costs dj; if i is

assigned to machine j. We want to assign products to machines to
build everything while minimizing the total cost.

=Polynomial

The Generalized assignment problem o
Let be m products, n machines. Making i takes a; and costs dj; if 1 is

made by machine j. The maximal operating duration of a machine J
Is b;. We want to assign products to machines to minimize the total
production cost.

=NP-hard

17
How to solve NP-hard problems ?

- Complete enumeration (for very small instances !)

- Implicit enumeration (for medium-size instances)

- branch-and-bound
- dynamic programming

- Heuristic methods (for very large instances): can provide
very good solutions but no guarantee of optimality
- (méta/math-)heuristics
- local search

Branch-and-Bound
(divide and conquer)

Our case study: the knapsack problem (KP)

Data:

- knapsack of capacity Q,

- n =4 items available,
- item 1 weights w; and costs ¢;

How to fill the knapsack with
items of maximal total cost whilst
respecting the capacity ?

Variables g)bjective-fu nction
? .

Constraints Domain
? ?
. - 19

Our case study: the knapsack problem (KP)

Data:

- knapsack of capacity Q,

- n = 4 items available,
- item 1 weights w; and costs ¢;

How to fill the knapsack with
items of maximal total cost whilst
respecting the capacity ?

max 42Xq + 40Xy + 12x3 + 25X, (11)

S.t.
7X1 4+ 4xo + 3x3 + 5%, < 10 (12)
X1,X2,X3, X, € {0,1} (13)

19

Relaxation of a problem

Let (P) and (RP) be two problems, and let S(py and Szpy be
their solutions sets, let S’("P) and S’("RP) be their optimal solutions.

- Relaxation
(RP) is a relaxation of (P) if and only if Sirpy C S¢p)

- Linear Relaxation
(RP) is a linear relaxation of (P) if and only if
(P) = (RP) U{integrality constraints}

- Other types of relaxations
suppression or aggregation of contraints
Lagrangian relaxation

NB: If (P) is a minimisation problem, then f(s¢zp)) < f(S(py).

NB2: if the optimal solution of (RP) happens to be feasible for (P),

then it is also the optimal solution of (P). 20

Lower bound (LB) and Upper bound (UB)

Definitions (for a maximisation problem)

- UB = any value greater or equal to the optimal value

- LB = any value lower or equal to the optimal value
How to obtain bounds for a maximisation problem ?

- LB: the cost of any feasible solution provides an upper bound

- UB: any optimal solution of a relaxation provides a lower bound

Benefit of LB: the corresponding solution is feasible

Benefits of UB

- Evaluate the quality of a feasible solution, prove its optimality
- Estimate the gap to optimality when the optimal solution is unknown
- Evaluate if it is worth allocating more computing time to the search of a better

solution
21

Example of bound computation for the knapsack problem

Key idea: solve the linear relaxation (called the Fractionnal
knapsack problem - FKP) with a dedicated algorithm

(FKP) max 42Xy + 40x; + 12X3 + 25X, (14)

s.t.
7x1 + 4Xy + 3X3 + 5%, < 10 (15)
0<x;<1,Vie{1,2,3,4} (16)

(FKP) can be solved with a linear programming algorithm such as
simplex. But it can also be solved with a polynomial algorithm based

on sorting all items in decreasing order of ratio r; = ijilgft.

- Apply the algorithm to deduce an upper bound for (KP).

- What can you conclude ?

A faster upper bound computation = capacity x max; fj ”

Decision tree /| enumeration tree

max 42X1 + 40Xy + 12X3 + 25X, (17)

7X1 + 4Xy + 3x3 + 5%, < 10 (18)
X1, X2, X3, Xy € {0,1} (19)

- Build a decision tree associated to the problem
- Deduce the associated subproblem tree

The tree has 2" leaves (= combinatorial explosion)

But If we could identify which subtrees do contain an optimal

solution, we could signficantly reduce the search space.
23

Branch-and-bound

Initial problem P,
Set of feasible solutions

“=Branching

“Subproblems P, and P, (corresponding
jsubset of solutions) obtained after
Jbranching on P,

“Subproblems P; and P, (corresponding
subset of solutions) obtained after branching

24

Branch-and-bound

Principle
- Separate progressively the problem into subproblems
easler to tackle
Objective

- Enumerate implicitly the set of feasible solutions
- Classify the subproblems in a search tree
- Prune nodes as early as possible in the search tree

3 main components

1. Branching rule
2. Pruning tests (usually based on bounds)
- Admissibility Test, Optimality Test, Resolution Test

3. Exploration strategy

A branch-and-bound algorithm for the knapsack problem

(KP) max 42x71 + 40X, + 12X3 + 25X, (20)

St
7x1 + 4X5 + 3X3 + 5%, < 10 (21)
X1,X2,X3, X4 € {0,1} (22)

1. Branching rule

- choose the first variable x,, in the decreasing ratio order
- 2 subproblems: x, = 0 and x, =1

2. Pruning tests : based on uppers bounds (UB)

- Admissibility test: prune if the remaining capacity is negative
- Optimality test: prune if the UB is worse than KP’s best known solution
- Resolution test: prune if the optimal solution of FKP is integer

3. Exploration strategy
- priority to the node with the highest UB

25

26

~ TaadKmagm SAN
(Bo= A

E:gr‘-“f‘%—rfl—ﬁ)—%;e%j—'—'ﬂyf—o

LBy CS)%q=ien) =0
/

g

Max 4o, + Yo 2q +A23¢y + K x,
st. 'Drk‘-fkr*(,_-f-%k\,—ffk,« S0

@ 9«(/«,'“1_'1(-)’-;(_\‘ 7/0
Uﬁozsnl X0 pAoO0
« :/' o= ©
,g:/ wo
@;'W O+ Ll’l“f"/‘z}(')"?/{x‘;

S Qo +3ay+ 5 SO
R T Wy 2O

UB, = Ofnyeno = £O

T’lw: Lo+ G412, +/l27<342§x
77(.4 —4'39(3"'5)‘5' < 6

U—ﬁ/"-’—L/,O‘f'ﬂA)((:q'é
Ley= 4o fe=e J
7y /’y %, 0 <¢s
Ophometly a1
phomety &4
r’]ﬁ(x%z-ﬂhg*u"«/ 4o+/\2'x}+2{'uq
St omy4 S < S sy +5%y <€
TN e
ﬂ}«a/,e(f& -
@d,wm\wl)Q/l an: ’fO-fl'\qff'-‘-(Lf
A/)f qu: 4—0

MNox &40 + 12

4
M;v)(‘ 651‘/12%3

St 3y, <2 ® g, < (
Xszo X3z o

U@}:C?-f RBx"l‘i‘éﬁ U@S: (O+Nqy x{= 4o

[B,< €5 <(s

Achive modks Slonid

Mo 7% D=2 s AoR
5@ N2 OB D%
M}MM) 2 —gh=(o

AT AR
S LY

IIS,.,L Kvowm etk

L@oto’ yt'gﬁzﬁ'kJ$1L~$ (o)
L3, GO, Mgel, M muy =Mt
LBV-.CT, X, =2 9«.4‘-7(,’-\;J

Classical branch-and-bound algorithm for general MILP

1. Branching rule
- choose the variable x, with the most fractionnal value v* in
the optimal solution of the relaxation
- 2 subproblems: x, < [v*] and x; > |v*]
2. Pruning tests : based on solving the linear relaxation (LR)
of the current node to obtain bounds
- Admissibility test: prune if LR is infeasible
- Optimality test: prune if LR's solution value is worse than
the best known solution value
- Resolution test: prune if LR’s optimal solution is integer
3. Exploration strategy
- priority to the node with the best bound

=To be applied on the cement problem from slide 11 for illustration.

(replace the simplex method with the graphical method to solve LR)

27

MILP solvers

28

