
Introduction to Integer Linear Programming,
reformulation and decomposition

Sandra Ulrich Ngueveu
CIMPA School 2021: July 6th - 8th, 2021

Université de Toulouse - Toulouse INP - Laboratory LAAS-CNRS
ngueveu@laas.fr

1

Part 2: using piecewise linear functions to

approximate MINLP with MILP



Content

Illustrative case studies

How to obtain a good piecewise linear function ? (Focus on 1D)

How to model the piecewise linear function within an MILP

2

Illustrative case studies



Water pumping and desalination process
Electrical model

• Vm, Im : electrical tension, current

• Tm : motor electromag. torque

• Ω: rotation speed

• kΦ : torque equivalent coefficient

• r: stator resistance

Electric motor equations (inertia neglected):
Vm = rIm + kΦΩ (1)

Tm = ΦmIm (2)

Electrical power needed: Pe = VmIm .

Pressure drop in the pipe
• ∆Pipe, ρ: pressure drop,water density

• h: height of water pumping

Static+Dynamic pressure
∆Pipe = kq2 + ρgh (3)

Pump 

P1 

RO Module 
Pump 

P2 

Tank T1 Tank T2 

Pump 

P3 

Tank T3 

Mechanical-Hydraulic conv.
• Pp : output pressure

• q: debit of water

• a, b: non linear girator coefs

• c: hydraulic friction

• p0 : suction pressure

• sp + sm : mechanical losses

Static equations of the motor-pump
(mechanical inertia neglected):

Pp = (aΩ+ bq)Ω− (cq2 + p0) (4)

Tm = (aΩ+ bq)q+ (sm + sp)Ω (5)

3

Efficiency function of pump 2 + reverse osmosis module

Pump 
P1 

RO Module 
Pump 

P2 
Tank T1 Tank T2 

Pump 
P3 

Tank T3 

Subsystem pump 2 + Reverse Osmosis module is modeled with

Pe = r∗K(q,h)+((sm+sp)∗Ω(q,h)+(q+F(q)/RMe)∗M(q,h))∗Ω(q,h)

where

F(q) = (RMod + RValve) ∗ q2
G(q) = (b ∗ (q+ F(q)/RMe))

M(q, h) = a ∗ Ω(q, h) + G(q)

Ω(q, h) =
−G(q)+

√
G(q)2−4a∗(−(p0+ρg∗(h−lout)+(k+c)∗((q+F(q)/RMe)2)+F(q)))

2∗a
K(q, h) = (((sm + sp) ∗ Ω(q, h) + (q+ F(q)/RMe) ∗ (a ∗ Ω(q, h) + G(q)))/kφ)2

4



Our case study: the nonlinear knapsack problem

example of nonlinear cost
function f1

max f1(x1) + f2(x2) + f3(x3) + f4(x4) (6)

s.t.

h1(x1) + h2(x2) + h3(x3) + h4(x4) ≤ 10 (7)
x1, x2, x3, x4 ≥ 0 (8)

5

Classical MINLP solution methods

(a) Branch-and-Bound-based methods for MINLP

spatial B&B,α-B&B, interval analysis, Branch-and-reduce

+ global optimality guaranteed if carried out to completion

- only for small/medium instances

(b) Approximate with piecewiselinear function and solve MILP

+ (more) tractable problems

+- can we prove guarantee global optimality ?

(a) (b)
6



How to obtain a good piecewise
linear function ? (Focus on 1D)

4 ways to (piecewise) linearize a nonlinear function

(a) Sampling (b) Approximation

(c) Lower bounding (d) Upper bounding 7



How can we assess the quality of a (piecewise) linearization ?

Let f (x) : D → N be a nonlinear function and let g(x) be a
piecewise linear function defined on the same domain. Then
ea(x) = |f (x)− g(x)| expresses the pointwise absolute
approximation error at point x while er(x) = |f (x)−g(x)|

|f (x)| is the
pointwise relative error.

The two classical criteria to evaluate PWL functions, are:

• the maximal pointwise error(relative or absolute):

max
x∈D

ea(x) or max
x∈D

er(x)

• or the integral of the pointwise error:∫
D
ea(x)dx or

∫
D
er(x)dx

8

Consequential choices

Equidistant breakpoints or not ? Interpolation or not ?

Continuous PWL or discontinuous PWL ?

0 1 2 3 4 5 6
0

1

2

continuous PWL has 3 segments
f (x) δ limits

x

f
(x
)

0 1 2 3 4 5 6
0

1

2

discontinuous PWL has 2 segments
f (x) δ limits

x

f
(x
)

9



Challenges

A naïve construction of the PWL function can lead to a solution
method (“PWL building +MILP resolution”) that becomes a try
and error approach: no guarantees on the solution quality or
iterative process with a number of iterations not defined a
priori.
Approximating nonlinear functions with PWL functions

Modeling the PWL functions in a MILP

Solving MILPs containing PWL functions

satisfactory solution ?

No

DONE
Yes ⇒ ?

Bound each nonlinear function with 2 PWL functions

Modeling the PWL functions in a MILP

Solving MILPs containing PWL functions

DONE

Other difficulties:

• semi-infinite programming
• smaller precision target→ more segments

10

How to model the piecewise linear
function within an MILP



A simpler nonlinear knapsack problem to work with

Each segment i of PWL function gA is defined by the left extremity
(xLi , y

L
i ), the right extremity (x

R
i , y

R
i ), the slope ai, the y-intercept bi.

E.g.: (xL1 = 0, yL1 = 0), (xR1 = 5, yR1 = 4),a1 = 0.8 and b1 = 0

maxgA(xA) + 40xB + 12xC + 25xD (9)

s.t.

xA + xB + xC + xD ≤ 10 (10)
xA, xB, xC, xD ≥ 0 (11)

How to formulate the PWL term gA(xA) ? 11

PWL modelling

New decision variables

• βi: equal to 1 if segment i is active, 0 otherwise
• αi: equal to the xA if xA ∈ segment i

Replace g(xA) and xA using equations (12)-(13).

g(xA) =
∑
i∈I

(aiαi + biβi) (12) xA =
∑
i∈I

(αi) (13)

Complementary constraints:

xLi βi ≤ αi ≤ xRi βi (14)∑
i∈I

βi = 1 (15)

PWL modelling⇒ |I| binary and |I| continuous variables.
12



Possible PWL models

Several models exists, especially for the continuous case. The
choice of the model must be carefully considered.

• CC (Convex Combination)
• Inc (Incremental)
• DCC (Disaggregated Convex Combination)
• Log (Logarithmic Convex Combination)
• DLog (Disaggregated Logarithmic Convex Combination)
• Multiple Choice
• SOS2 (Specially Ordered Sets of Type 2)

13

Example of a logarithmic reformulation

Key idea: use log2(I) binary variables δi to encode I intervals

i δ3δ2δ1
1 000
2 001
3 010
4 011
5 100
6 101
7 110
8 111

U1 = {2, 4, 6, 8}
U2 = {3, 4, 7, 8}
U3 = {5, 6, 7, 8}
V1 = {1, 3, 5, 7}
V2 = {1, 2, 5, 6}
V3 = {1, 2, 3, 4}

Decision variables:

• δj : binary variable for encoding

• λi, θi ≤ 1: chosen weight for xLi , x
R
i

Replace g(xA) and xA using :

xA =
∑
i∈I

(
xLi λi + xRi θi

)
and g(xA) =

∑
i∈I

(
yLi λi + yRi θi

)
∑
i∈I

(λi + θi) = 1

Complementary constraints∑
i∈Uj

(λi + θi) ≤ δj, and
∑
i∈Vj

(λi + θi) ≤ (1− δj), ∀j ∈ {1... log2(|I|)} (16)

where Uj (resp. Vj) set of intervals that can not be active if δj = 0 (resp. 1− δj = 0)

PWL modelling⇒ log2(|I|) binary and 2|I| continuous variables. 14



Useful Tools / Julia Packages

LinA: Computing a PWL approximation, over-/under-estimators
with minimum number of linear segments

• link: http://homepages.laas.fr/sungueve/LinA.html
• input : a univariate continuous nonlinear function
• output : a PWL function with minimum number of pieces

PiecewiseLinearOpt: Modeling efficiently a given continuous
PWL function in MILP

• link: https://github.com/joehuchette/PiecewiseLinearOpt.jl
• input : a continuous PWL (or sampled nonlinear) function
• output : variables and constraints to insert in a MILP

15

In summary

• PWL functions can be used to approximate non-linearities
present in various optimization problems.

• When carefully constructed and combined, PWL functions can
lead to MILP which can provide tight bounds and guarantees on
the quality of the solutions obtained.

• Such careful constructions are based on concepts of over- and
under-estimation of the original nonlinear functions together
with the ability to compute the approximation errors a priori.

• The efficiency of the “PWL approximation + MILP” solution
method leverages significant advances in MILP solvers for
reasonable-sized instances

Next lesson introduces a decomposition method for larger instances

16


