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Introduction to duality in linear
programming



Illustration

max z = 3x1 + 2x2 (1)

s.c.
2x1 + x2 ≤ 18 (2)
2x1 + 3x2 ≤ 42 (3)
3x1 + x2 ≤ 24 (4)

x1, x2 ≥ 0 (5)

Feasible solutions produce lower bounds for the objective-function
value z.

• What if we were interested in upper bounds (UB) ?
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Illustration

max z = 3x1 + 2x2 (1)

s.c.
2x1 + x2 ≤ 18 (2)
2x1 + 3x2 ≤ 42 (3)
3x1 + x2 ≤ 24 (4)

x1, x2 ≥ 0 (5)

• Multiply constraint (2) by 2 and deduce an UB of z

• Multiply constraint(3) by 3
2 and deduce an UB of z

• Consider the linear combination (2)+ 13 (3) and deduce an UB of z

• Consider the linear combination 3
7 (2)+

3
7 (3)+

3
7 (4) and deduce an

UB of z
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Illustration

max z = 3x1 + 2x2 (1)

s.c.
2x1 + x2 ≤ 18 (2)
2x1 + 3x2 ≤ 42 (3)
3x1 + x2 ≤ 24 (4)

x1, x2 ≥ 0 (5)

• A linear combination produce an UB if and only if each
coefficient of a variable is higher or equal to the coefficient of
the same variable in the objective-function

• It is preferable to search for the smallest possible value of UB
⇓

Model the problem of finding the best coefficients (linear program) 3

Exemple

max 3x1 + 2x2 (6)

s.c.

2x1 + x2 ≤ 18 (7)
2x1 + 3x2 ≤ 42 (8)
3x1 + x2 ≤ 24 (9)

x1, x2 ≥ 0 (10)

PRIMAL

min 18u1 + 42u2 + 24u3 (11)

s.c.

2u1 + 2u2 + 3u3 ≥ 3 (12)
u1 + 3u2 + u3 ≥ 2 (13)

u1,u2,u3 ≥ 0 (14)

DUAL
1. Solve each of these linear programs
2. Compare the optimal costs
3. Write the matrix form of these two problems and
comment on it 4



Relation Primal / Dual

Duality is a fundamental concept in linear programming. We can associate to a linear
program (PL) its dual (DL) defined as a linear program:

• with a matrix of constraints coefficients AT , with a vector of decision variables u
• a right-hand-side vector c, a cost vector b,

according to the following conversion table.

(LP) Primal Dual (DL)
min z = c.x Objective-function (min) Right-hand-side maxw = u.b

Right-hand-side Objective-function (max)
s. t. A constraint matrix AT constraint matrix s. t.

Constraint i: ≥ Variable ui ≥ 0
A.x ≤ b Constraint i: = Variable ui ∈ R u.AT ≤ c

Variable xj ≥ 0 Constraint j: ≤
x ≥ 0 Variable xj ∈ R Constraint j : = u ≤ 0

Table 1: Primal and Dual: rules and examples

(PL) is then called primal and (DL) is its dual problem.
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Relation Primal / Dual

There are special connexions between these two problems, including:

• The dual of (DL) is (PL).

• If x̄ if a solution of (PL) and ū is a solution of (DL), then: z̄ = c.x̄ ≥ w̄ = ū.b.

• Optimal solutions x∗ and u∗ of (PL) and (DL) share the same cost z∗ = w∗ .

• If solutions of a (PL) and its (DL) share the same cost, then they are optimal

• The reduced cost 1 c̃j of the variable x̄j is:

c̃j = cj − ūAj (15)

Therefore, in the minimisation case, the cost of a feasible (DL) solution is a lower
bound for the optimum, whereas the cost of a feasible (PL) solution is an upper bound.

1The reduced cost of a variable corresponds to the impact on the objective-function
value of a unitary incrementation of its current value. At the optimum of a
minimisation problem, the reduced cost of all its variables is greater or equal to zero
because, if there existed variables with negative reduced cost, that would mean that
the values of such variables should have been increased to reduce the
objective-function value..
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Duality theorem

Theorem
If either (PL) or (DL) has a finite optimal solution, then so does
the other, and the optimum objective values are equal. It either
problem has an unbounded objective value, then the other is
infeasible.
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Introduction to column generation
and Branch-and-Price



Our case study: the bin packing problem

Data:

• |J| bins of capacity Q = 10,

• |I| = 4 items to store,

• item i has a size wi

How to store items in a minimal
number of bins whilst respecting
the capacity ?

(CF)min y1 + y2 + y3 + y4 (16)

s.t.8x1,1 + 3x1,2 + 5x1,3 + x1,4 ≤ 10y1 (17)

8x2,1 + 3x2,2 + 5x2,3 + x2,4 ≤ 10y2 (18)

8x3,1 + 3x3,2 + 5x3,3 + x3,4 ≤ 10y3 (19)

8x4,1 + 3x4,2 + 5x4,3 + x4,4 ≤ 10y4 (20)

x1,1, x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4 ∈ {0, 1} (21)

x4,1x4,2, x4,3, x4,4, y1, y2, y3, y4 ∈ {0, 1} (22)

Focus on the linear
relaxation of (CF):

• Cost of LP = 2.0

Can we find a formulation
of the binpacking whose
linear relaxation would
provide a better bound?
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An extended formulation

Key idea: consider as input data all subsets of items that can
be stored together

• set of 1 item: 8, 3, 5, 4

• set of 2 items: (3,5), (3,4), (5,4)

• set of 3 items: -

• set of 4 items: -

Which subset of items should we choose for each bin to
reduce number of bins used ?
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An extended formulation (EF1)

Minimize the number of subset selected

min
7∑
s=1

4∑
j=1

zs,j (23)

s.t.

choose one of the subsets that contain the 1st item

z1,1 + z1,2 + z1,3 + z1,4 = 1 (24)

choose one of the subsets that contain the 2nd item

z2,1 + z2,2 + z2,3 + z2,4 + z5,1 + z5,2 + z5,3 + z5,4 + z6,1 + z6,2 + z6,3 + z6,4 = 1 (25)

choose one of the subsets that containthe 3rd item

z3,1 + z3,2 + z3,3 + z3,4 + z5,1 + z5,2 + z5,3 + z5,4 + z7,1 + z7,2 + z7,3 + z7,4 = 1 (26)

choose one of the subsets that contain the 4th item

z4,1 + z4,2 + z4,3 + z4,4 + z6,1 + z6,2 + z6,3 + z6,4 + z7,1 + z7,2 + z7,3 + z7,4 = 1 (27)

All variables are binary

zs,j ∈ {0, 1},∀s ∈ {1, ..., 7},∀j ∈ {1, ..., 4} (28) 10

No need to know which bin was assigned to which subset ! (EF2)

Minimize the number of subset selected

min z1 + z2 + z3 + z4 + z5 + z6 + z7 (29)

s.t.

choose one subset that contains the 1st item (8)

z1 = 1 (30)

choose one subset that contains the 2nd item (3)

z2 + z5 + z6 = 1 (31)

choose one subset that contains the 3rd item (5)

z3 + z5 + z7 = 1 (32)

choose one subset that contains the 4th item (4)

z4 + z6 + z7 = 1 (33)

All variables are binary

zs ∈ {0, 1},∀s ∈ {1, ..., 7} (34) 11



Quality of the linear relaxation of (EF2)

Let (LEF2) be the linear relaxation of (EF2). Its optimal solution is :

• z1 = 1

• z5 = z6 = z7 = 0.5

• z2 = z3 = z4 = 0

which corresponds to an objective-function value of 2,5 !

Therefore

• strength of (LEF2): bounds obtained of better quality than (LCF)

• limit of (LEF2): exponential number of variables: for larger
instances, it would not be possible to generate (EF2) and feed it
to a black-box MILP solver

Key observation: many variables are inactive (set to 0) in the optimal
solution of (LEF2).
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Column generation

If we could generate only the ”good” subset of variables, we could
solve (LEF2) without needing to explicitely integrate all the
exponential number of variables(=columns)
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How to identify promising columns

PRIMAL

min
∑
s∈S

zs (35)

s.t.
∑
s∈S

ai,szs = 1, ∀i ∈ {I} (36)

zs ≥ 0, ∀s ∈ S (37)

= master problem

DUAL

max
∑
i∈I

ui (38)

s.t.
∑
i∈I

ai,sui ≤ 1, ∀s ∈ {S} (39)

ui ∈ R, ∀i ∈ I (40)
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How to identify promising columns

PRIMAL

min
∑
s∈S

zs (35)

s.t.
∑
s∈S

ai,szs = 1, ∀i ∈ {I} (36)

zs ≥ 0, ∀s ∈ S (37)

= master problem (MP)

DUAL

max
∑
i∈I

ui (38)

s.t.
∑
i∈I

ai,sui ≤ 1, ∀s ∈ {S} (39)

ui ∈ R, ∀i ∈ I (40)

• A restricted master problem (RMP) is obtained if S is restricted to a subset S
• Any column from S\S corresponds to a constraint missing from the dual
• A constraint missing from the dual, but respected by the current solution, can
be disregarded because adding it to S would not have changed the solution

• given the current (RMP) solution and the resulting dual variable values ui , is

there a missing subset of items that would lead to a violated constraint (39) ?
• if yes, some of them should be added to S before (RMP) is solved again
• if no, stop: the current solution of (RMP) is also optimal for (MP)
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Resulting subproblem

Objective:

• Given the dual variables values ui corresponding to your
current solution, find the subset of items s∗ and therefore
the associated coefficients ai,s∗ such that

∑
i∈I ai,s∗ui > 1.

Finding this set s∗ consists in solving the following subproblem

max
∑
i∈I

uiαi (41)

s.t.
∑
i∈I

wiαi ≤ Q (42)

αi ∈ {0, 1}, ∀i ∈ I (43)

⇒ a Knapsack problem !
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Resulting subproblem

Objective:

• Given the dual variables values ui corresponding to your
current solution, find the subset of items s∗ and therefore
the associated coefficients ai,s∗ such that

∑
i∈I ai,s∗ui > 1.

Finding this set s∗ consists in solving the following subproblem

max
∑
i∈I

uiαi (41)

s.t.
∑
i∈I

wiαi ≤ Q (42)

αi ∈ {0, 1}, ∀i ∈ I (43)

⇒ a Knapsack problem !

The resulting column has a reduced cost c =
∑

i∈I αiui − 1
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Branch-and-price

branch-and-price
||

branch-and-bound
+

column generation

min
∑
s∈S

∑
j∈J

zs,j (44)

s.t.
∑
j∈J

xi,j = 1, ∀i ∈ I (45)

xi,j =
∑
s∈S

ai,szs,j, ∀i ∈ I,∀j ∈ J (46)

zs,j ≥ 0, ∀s ∈ S,∀j ∈ J (47)

xi,j ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (48)
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Conclusion and useful references



Reminder of the goals of this course

We planned to

• introduce you to the basics of (Mixed) Integer Linear
Programming (part 1)

• illustrate how MILP can be used to solve Mixed Integer
Nonlinear Problems via piecewise linear approximation
(part 2)

• introduce you to principles of the column generation and
branch-and-price algorithms (part 3)

With the aim of

• expanding your modeling and solving capabilities
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Thank you for your attention !
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University of Toulouse - Toulouse INP

4th largest city in France
2nd largest number of students
2019,2020 favorite student city
https://www.inp-toulouse.fr/en
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LAAS-CNRS

Largest lab. of CNRS (French National Center for Scientific Research)

• 642 employees: 43% PhD+PostDoc, 37% Prof.+Researchers

• 4 Disciplines / 8 Scientific Themes / 22 Research Teams

• Critical Information Processing, Networks and Communications, Robotics,
Decision and Optimization, MicroNanosystems RF and Optical, Energy
Management, Nano-Engineering and Integration, MicroNanoBio Technologies

https://www.laas.fr/public/en
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ROC Research Team

(Operations Research, Combinatorial Optimization and Constraints)

• branches of Operations Research and/or Artificial Intelligence
(more specifically Constraint Programming).

• Find structural properties and propose solution approaches for
combinatorial optimization problems

• Research Topics

Combinatorial Optimization Solution approaches
models and algorithms

Robust, Multi-agent, Industrial applications
Multi-objective Problems

https://www.laas.fr/public/en/roc 23
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