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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: various applications of DFO

Course 3: some challenges in DFO
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WHY DERIVATIVE FREE OPTIMIZATION ?
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STUDY OF COMPLEX SYSTEMS

Parameters

$$

Responses of interest

Reach one or several
objectives by tuning the 

input parameters

➢ Manual optimization (trial & error): when the expert knows very well and can control 
the system, and when the number of parameters is small

➢ Random exploration: How many simulations should we do ? How do we know that the 
current set of values is close to a solution ?

➢ Discretisation of the parameter space on a regular grid: 
3n simulations if we consider 3 points per dimension and n parameters !!!

Experiments/Simulations 
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Experiments/Simulations 
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Experiments/Simulations 
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STUDY OF COMPLEX SYSTEMS

➢ An optimizer O is an algorithm which proposes iteratively a new x based on the information 
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Experiments/Simulations 

OPTIMIZATIONmin
𝑥

𝑓 𝑥

STUDY OF COMPLEX SYSTEMS

➢ An optimizer O is an algorithm which proposes iteratively a new x based on the information 
from previous trials in order to approximate the solution of the problem 𝑥 = argmin(𝑓 𝑥 )

➢ The cost of the optimization is linked with the number of calls to the simulator S which 
evaluates f 

S O S O
𝑥0 𝑓(𝑥0) 𝑥1 𝑓(𝑥𝑘) 𝑥𝑘+1

Optimizer
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𝑥 𝑓(𝑥)

Parameters

$$

Responses of interest
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WHY DERIVATIVE FREE OPTIMIZATION ?

More and more complex simulators
black-box simulator (proprietary code or a simulation package)
derivatives of objective function are not available

numerical approximation of ∇𝑓(𝑥) is expensive: finite-differences when computing 𝑓(𝑥) is 
expensive or for a high number of optimization variables 𝑥

computing 𝑓(𝑥) is expensive: time consuming numerical simulations or experiments

➢Need for optimization methods adapted to derivative free problems

Simulator
𝑓(𝑥)

Optimizer
minx𝑓(𝑥)

𝑥

𝑓(𝑥)
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DFO METHODS

(Standard derivative-based methods with approximate gradients)

Direct Search methods 
Nelder Mead Simplex

Pattern Search

Surrogate optimization / model-based DFO methods
Local model of the objective function

Global model of the objective function

Stochastic DFO methods
Evolutionary strategies

Simulated annealing
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APPROXIMATE GRADIENTS

by finite differences (F.D.)
n+1 simulations per iteration

by generalized finite derivatives (E.F.D.)

by an approximation model of the objective function
simulations from previous iterations + m (≤ n) new simulations

∇𝑥𝑖𝑓(𝑥
𝑘) ≈

𝑓 𝑥𝑘 + ℎ𝑒𝑖 − 𝑓(𝑥𝑘)

ℎ

∇𝑓 𝑥𝑘 ≈ ∆𝑥 −1 𝑓 𝑥𝑘 + ∆𝑥 − 𝑓 𝑥𝑘

∆𝑥 is the perturbation matrix (for F.D. ∆𝑥 = 𝐼𝑛)

෨𝐹 𝑥𝑘 + 𝑠 = 𝑓 𝑥𝑘 + ෤𝑔𝑘𝑠 ou ෨𝐹 𝑥𝑘 + 𝑠 = 𝑓 𝑥𝑘 + ෤𝑔𝑘𝑠 + 𝑠𝑇 ෩𝐻𝑘𝑠

∇𝑓 𝑥𝑘 ≈ ෤𝑔𝑘
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APPROXIMATE GRADIENTS: FINITE DIFFERENCES
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APPROXIMATE GRADIENTS: MODEL OF THE OBJECTIVE FUNCTION
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A CLASSICAL EXAMPLE FOR NL OPTIMIZATION

-1 0 1
-0,5

-0

0,5

1

1,5

Rosenbrock function :

(-1;1)
initial point solution

(1;1)
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DERIVATIVE-BASED METHOD

14 iterations

Solution obtained with Newton method 
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DERIVATIVE-BASED METHOD

53 iterations

Solution obtained with BFGS method 
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APPROXIMATE GRADIENTS

92 simulations

-1 0 1
-0,5

-0

0,5

1

1,5

Solution obtained with BFGS method 
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APPROXIMATE GRADIENTS

Function-evaluation cost: 𝑛 + 1 evaluations at each iteration

Difficulty to choose the finite difference step ℎ

If noisy function →meaningless approximate gradients

➢Convergence issues
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DFO METHODS

Use only objective function values

No gradient approximation

Sample of points 𝑥𝑖 𝑖=1,…,𝑝➔ simulations 𝑥𝑖 𝑖=1,…,𝑝➔ new iterate 𝑥𝑘
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DFO METHODS

(Standard derivative-based methods with approximate gradients)

Direct Search methods 
Nelder Mead Simplex

Pattern Search

Surrogate optimization / model-based DFO methods
Local model of the objective function

Global model of the objective function

Stochastic DFO methods
Evolutionary strategies

Simulated annealing
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DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm

Source : Richards (2010)

based on the comparison of objective function values on a (𝑛 + 1) simplex: 
𝑓 𝑥1 ≤ 𝑓 𝑥2 … ≤ 𝑓(𝑥𝑛+1)

Attempt to improve the worst objective function value 𝑓(𝑥𝑛+1):
𝑥𝑛+1 is replaced by a point belonging to the line ҧ𝑥, 𝑥𝑛+1
with ҧ𝑥 =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖, centroid of the best 𝑛 points

→ expansion, reflection or contraction 
of the simplex at each iteration 
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DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm

Source : Wright (2013)
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DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm

Termination conditions: 
function values at vertices are close to each other

or simplex becomes too small

Simulation cost:
k=0 and for any shrinkage step: (𝑛 + 1) evaluations

1 or 2 evaluations for all other steps

Limited convergence results (only for 𝑛 = 1 or 𝑛 = 2)
see Torczon (1991) for other simplex methods with better convergence results

Lot of failure examples
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DIRECT SEARCH METHODS

𝑥1 = 𝑥0 + 𝛼0𝑒1

𝑥2 = 𝑥1 + 𝛼1𝑒2

⋮
𝑥𝑛 = 𝑥𝑛−1 + 𝛼𝑛−1𝑒𝑛−1

𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑛𝑒1

⋮

𝛼𝑘 is chosen to produce a sufficient decrease

𝑓 𝑥𝑘 + 𝛼𝑘𝑒𝑘−1 < 𝑓 𝑥𝑘 − 𝜌 𝛼𝑘

with 𝜌 𝑡 ≥ 0 increasing function of 𝑡,  𝜌(𝑡)/𝑡
𝑡→0

0

→Inefficient: coordinate direction (almost) ⊥ ∇𝑓 𝑥𝑘

→Efficient when the variables are essentially uncoupled

Linesearch derivative free methods: e.g. coordinate search method
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DIRECT SEARCH METHODS

Pattern search methods

Motivation: parallelisation of function evaluations
Instead of one search direction 𝑠𝑙(= 𝑒𝑙) in linesearch, explore a set of directions 𝐷𝑘

e.g. 𝐷𝑘 = 𝑒1, 𝑒2, … , 𝑒𝑛, −𝑒1, −𝑒2, … , −𝑒𝑛

At each iteration, for a given mesh step 𝛼𝑘:

Search step (OPTIONNAL): evaluate the objective function on a finite number of points 
with any method: along a given direction, on a simplex, …

Poll Step: if no better point if found in optionnal search step, 
search for a better point in the 𝐷𝑘 directions: 𝑥𝑘 + 𝛼𝑘𝑠𝑖 , 𝑠𝑖 ∈ 𝐷𝑘

If no better point is found (no smaller function value):
𝑥𝑘+1 = 𝑥𝑘 and decrease the mesh size 𝛼𝑘

else 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑠𝑖 and increase the mesh size
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DIRECT SEARCH METHODS

Pattern search methods

Source : Kolda et al. (2003)
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DIRECT SEARCH METHODS

Pattern search methods: DIRECT

Source : Perttunen et al. (1993)

= Dividing RECTangles

Divide each side of the « rectangle(s) » 
associated with the smallest function values into
3 in order to define sub-rectangles

Evaluate the center of the new rectangles

Stopping criteria: minimal size of the rectangles

Global convergence for continuous functions

High evaluation cost



38 |   ©  2 0 2 0   I F P E N

DIRECT ALGORITHM

-1 0 1
-0,5

-0

0,5

1

1,5

517 simulations
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DIRECT ALGORITHM

-1 0 1
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-0

0,5

1
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Last iterations
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DIRECT SEARCH METHODS

Popular methods
Easy to implement

Easy to parallelize

But expensive in terms of simulations

often coupled with a surrogate model in the search step

Pattern search methods
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DFO METHODS

(Standard derivative-based methods with approximate gradients)

Direct Search methods 
Nelder Mead Simplex

Pattern Search

Surrogate optimization / model-based DFO methods
Local model of the objective function

Global model of the objective function

Stochastic DFO methods
Evolutionary strategies

Simulated annealing
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SURROGATE OPTIMIZATION METHODS

Optimization methods based on a surrogate model of the objective function

to limit the number of evaluations of the objective functions

the model is updated during the iterations based on new simulations

The model is either global or local
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SURROGATE OPTIMIZATION METHODS

Global models

Design of experiment technique 
choose evaluation points to be used to compute the initial model

space filling design (maximin criterion)

Regression 
choose a model type

Gaussian process or kriging, Radial Basis Function (RBF), Neuronal Networks

Sampling criterion
choose new point(s) to evaluate for the update of the model
minimum of the current model, maximum of the error prediction ... 

Model
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

Assumption: the objective function is assumed to be a realization of a Gaussian 
random process (GP) with parametric mean function and stationary covariance 
function

𝐹 𝑥 = 𝛽𝑇𝑟 𝑥 + 𝑍(𝑥)

Regression
(e.g. polynomial d=1) zero-mean, stationary covariance

stochastic part
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

Assumption: the objective function is assumed to be a realization of a Gaussian 
random process (GP) with parametric mean function and stationary covariance 
function

𝐹 𝑥 = 𝛽𝑇𝑟 𝑥 + 𝑍(𝑥)

The surrogate model is the conditional 
expectation of the GP

෠𝐹 𝑥 = 𝐸 𝐹 𝑥 | 𝑥𝑖 , 𝑓 𝑥𝑖 𝑖=1,…,𝑝

= 𝛽𝑇 𝑟 𝑥 + 𝑘𝑇 𝑥 𝐾−1 𝑌𝑝 − 𝑅𝛽

avec 𝑅 = 𝑟𝑗 𝑥𝑖
𝑖,𝑗

, 𝐾 = 𝜌 𝑥𝑖 , 𝑥𝑗
𝑖,𝑗
, 𝑘 𝑥 = (𝜌 𝑥, 𝑥1 , … , 𝜌 𝑥, 𝑥𝑝 )
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

Assumption: the objective function is assumed to be a realization of a Gaussian 
random process (GP) with parametric mean function and stationary covariance 
function

𝐹 𝑥 = 𝛽𝑇𝑟 𝑥 + 𝑍(𝑥)

The surrogate model is the conditional 
expectation of the GP

෠𝐹 𝑥 = 𝐸 𝐹 𝑥 | 𝑥𝑖 , 𝑓 𝑥𝑖 𝑖=1,…,𝑝

= 𝛽𝑇 𝑟 𝑥 + 𝑘𝑇 𝑥 𝐾−1 𝑌𝑝 − 𝑅𝛽

The variance of GP are used as error indicators 
𝜎2(𝑥) = 𝜎2 − 𝑘𝑇 𝑥 𝐾−1𝑘𝑇 𝑥

avec 𝑅 = 𝑟𝑗 𝑥𝑖
𝑖,𝑗

, 𝐾 = 𝜌 𝑥𝑖 , 𝑥𝑗
𝑖,𝑗
, 𝑘 𝑥 = (𝜌 𝑥, 𝑥1 , … , 𝜌 𝑥, 𝑥𝑝 )
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)
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SURROGATE OPTIMIZATION METHODS

Sampling criterion based on Expected Improvement (EI)
a balance between exploration and minimization 

➢ EGO (Efficient Global Optimization)

or Bayesian Optimization

argmax 𝐸𝐼 𝑥 = 𝐸 𝐼 𝑥

= 𝐸 max(0, 𝑓𝑚𝑖𝑛 − ෠𝐹(𝑥))
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SURROGATE OPTIMIZATION METHODS

Local models

Quadratic interpolation models built from a set of appropriately chosen sample points
෠𝐹𝑘 𝑠 = 𝑐𝑘 + 𝑠𝑇𝑔𝑘 +

1

2
𝑠𝑇𝐻𝑘𝑠, s ∈ ℬ 𝑥𝑘 , Δ (trust region) (TR)

with 𝑐𝑘 ∈ ℝ, 𝑔𝑘 ∈ ℝ𝑛 and 𝐻𝑘 ∈ ℝ𝑛×𝑛 (symmetric) that satisfy interpolation conditions:
෠𝐹𝑘 𝑥𝑖 − 𝑥𝑘 = 𝑓 𝑥𝑖

The matrix of linear system must be non-singular and well conditioned

Minimization of the quadratic model in the trust region min
𝑠 ≤Δ𝑘

෠𝐹𝑘 𝑠

Update the model with new evaluations

Improve the geometry of the interpolation set to help with the model interpolation step
One point is replaced by another one that improves the conditioning of the interpolation matrix



50 |   ©  2 0 2 0   I F P E N

SURROGATE OPTIMIZATION METHODS

Local models

Let 𝑠𝑘 be the solution of the (TR) minimization problem

Predicted model decrease  ෠𝐹𝑘 0 − ෠𝐹𝑘 𝑠𝑘 = 𝑓 𝑥𝑘 − ෠𝐹𝑘 𝑠𝑘

Actual function decrease  𝑓 𝑥𝑘 − 𝑓 𝑥𝑘 + 𝑠𝑘

The trust region is updated according to the value of 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓 𝑥𝑘+𝑠𝑘

𝑓 𝑥𝑘 − ෠𝐹𝑘 𝑠𝑘

If 𝜌𝑘 ≥ 𝜂 (successful step):  𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘, Δ𝑘+1 ≥ Δ𝑘

If 𝜌𝑘 < 𝜂 (unsuccessful step): 𝑥𝑘+1 = 𝑥𝑘, Δ𝑘 is reduced or the interpolation set is improved
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SURROGATE OPTIMIZATION METHODS

Local models
objective function
quadratic model to be minimized
evaluation point
solution of the QP
point for model improvement
Trust Region
Minimal region
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SURROGATE OPTIMIZATION METHODS
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SURROGATE OPTIMIZATION METHODS

Local models objective function
quadratic model to be minimized
evaluation point
solution of the QP
point for model improvement
Trust Region
Minimal region
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SURROGATE OPTIMIZATION METHODS

Local models
objective function
quadratic model to be minimized
evaluation point
solution of the QP
point for model improvement
Trust Region
Minimal region
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SURROGATE OPTIMIZATION METHODS

Local models objective function
quadratic model to be minimized
evaluation point
solution of the QP
point for model improvement
Trust Region
Minimal region
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SURROGATE OPTIMIZATION METHODS

Local models (TR DFO)
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86 simulations
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SURROGATE OPTIMIZATION METHODS

Global models (Gaussian Process)

29 simulations

-1 0 1
-0,5

-0

0,5

1

1,5
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DFO METHODS

(Standard derivative-based methods with approximate gradients)

Direct Search methods 

Nelder Mead Simplex

Pattern Search

Surrogate optimization / model-based DFO methods

Local model of the objective function

Global model of the objective function

Stochastic DFO methods
Evolutionary strategies

Simulated annealing
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STOCHASTIC METHODS

Evolution strategies

Global optimization

Very few assumptions on function regularity

Main principle
1. Random generation of initial population 

2. Evaluation of each individual of current generation  

3. Reproduction:  selection of the best individuals

4. Diversification: cross-over and mutation 

5. Replacement : survival of the best individuals

6. Repeat step 2 until satisfying solution is obtained
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STOCHASTIC METHODS

Evolution strategies

An example of a cross-over operator for continuous variables
Pair of individuals 𝑥, 𝑦 selected randomly

𝑥, 𝑦 → 𝛼𝑥 + 1 − 𝛼 𝑦, 𝛼~𝑈( 0; 1 )

An example of a mutation operator for continuous variables
addition of a Gaussian noise

𝑥𝑖 ≔ 𝑥𝑖 + 𝑢𝑖 , 𝑢𝑖~𝑁 0, 𝜎𝑖
2 , 𝑖 = 1,2, … , 𝑛

𝜎𝑖 is a critical parameter to tune
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STOCHASTIC METHODS

Evolution strategies

1/5-rule (Rechenberg)

If  < 0.2, then  increases

If  > 0.2, then  decreases 
(where  = % of successful mutations over T generations)                   

➢Can adapt one general step-size

➢But no individual step size

Mutative step-size control 
Strategy parameters (step-sizes) treated similarly to optimized parameters

➢Facilitates adaptation of individual step-sizes
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STOCHASTIC METHODS

Evolution strategies

Mutation operator

Covariance matrix ~ inverse of a “global” Hessian matrix

Select the  best individuals to compute the mean
update of 

the covariance matrix

the global standard deviation
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STOCHASTIC METHODS

Evolution strategies vs. genetic algorithms

Main difference : in evolutionary strategies, only the best individuals are allowed 
to reproduce (elitist selection)

The parents can be included in the next generation

Similar operators: mutation, cross-over
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STOCHASTIC METHODS

Evolution strategies: CMAES method (Hansen)

Generation 1 Generation 20 Generation 30
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SURROGATE OPTIMIZATION METHODS

Evolution strategy; CMAES
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SURROGATE OPTIMIZATION METHODS

Evolution strategy; CMAES

170 last simulations
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STOCHASTIC METHODS

Simulated annealing

Principle: emulate the physical system of the cooling of a solid so that the frozen state is frozen for a 
minimum energy configuration

At a given iteration, a new solution (state) 𝑥𝑘+1 is determined from the previous solution (state) 𝑥𝑘

randomly choose a neighbour of 𝒙𝒌: 𝒚𝒌
then, the new state is

𝑥𝑘+1 = ൞

𝑦𝑘 if 𝑓 𝑦𝑘 ≤ 𝑓(𝑥𝑘)

𝑦𝑘 if 𝑓 𝑦𝑘 > 𝑓(𝑥𝑘)
𝑥𝑘 otherwise

with the probability 𝑒
𝑓 𝑥𝑘 −𝑓 𝑦𝑘

𝑡𝑘

𝒕𝒌 (temperature of the system) is a decreasing sequence in order to decrease the probability to 
accept a bad solution (increasing 𝑓)  at last iterations
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SURROGATE OPTIMIZATION METHODS

Simulated annealing: SIMPSA
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DFO METHODS

SQPAL = SQP BFGS – FD
SQA = local surrogate optim
EGO = global surrogate optim (kriging)
NMSMAX = Nelder-Mead  simplex
CMAES = Evolutionary Strategy

53 problems
2 ≤ 𝑛 ≤ 12

Benchmark Moré & Wild 
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DFO METHODS

Summary (I)

Classical methods with approximate gradients
➢popular (do not change optimizer) 

➢but not adapted for large scale problem

➢step size tuning is cumbersome

Direct Search methods 
➢ revival of these methods with parallelization
➢hybrid implementation (coupled with surrogate models)
➢not adapted for large scale problems
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DFO METHODS

Summary (II)

Surrogate optimization
Local interpolation model with TR

➢can handle constraints  (coupled with SQP)

➢good performances in terms of number of function evaluations

Global models

➢global methods

➢not adapted for large scale problems: 
needs a lot of evaluation to obtain a good accuracy
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DFO METHODS

Summary (III)

Evolutionary strategies / Simulated annealing
➢no assumption on function regularities

➢discrete optimization is possible

➢global methods

➢but expensive in terms of function evaluations

➢difficulties to handle constraints
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DFO METHODS

Global versus Local

Multi-start optimization
run a local method from several initial points

➢well adapted for functions with a small number of  local minima

➢handles constraints 

Global surrogate optimization (kriging, RBF, NN) / Evolutionary algorithms / Simulated 
annealing
➢not adapted for large scale problems: 

needs a lot of evaluations to obtain a good accuracy

➢difficulties for handling constraints
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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: various applications of DFO

Course 3: some challenges in DFO


