DERIVATIVE FREE OPTIMIZATION
AND APPLICATIONS

Delphine Sinoquet (IFPEN)

COURSE 1: MAIN DFO METHODS
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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DFO methods

@ Course 2: various applications of DFO

@ Course 3: some challenges in DFO
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WHY DERIVATIVE FREE OPTIMIZATION ?
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STUDY OF COMPLEX SYSTEMS
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» Manual optimization (trial & error): when the expert knows very well and can control

the system, and when the number of parameters is small
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STUDY OF COMPLEX SYSTEMS
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Responses of interest
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» Manual optimization (trial & error): when the expert knows very well and can control

the system, and when the number of parameters is small

» Random exploration: How many simulations should we do ? How do we know that the
current set of values is close to a solution ?
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STUDY OF COMPLEX SYSTEMS
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Experiments/Simulations
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Reach one or several
objectives by tuning the
input parameters

Responses of interest

~

» Manual optimization (trial & error): when the expert knows very well and can control

the system, and when the number of parameters is small

» Random exploration: How many simulations should we do ? How do we know that the
current set of values is close to a solution ?

» Discretisation of the parameter space on a regular grid:

3" simulations if we consider 3 points per dimension and n parameters !!!
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STUDY OF COMPLEX SYSTEMS

4 N
Parameters

Ly

.
oo o
c o R
e et .
s e
type 3

| © 2020 IFPEN

-

Experiments/Simulations

-

OPTIMIZATION

Responses of interest

~

- €nergies
(lanouveIles
K‘_—/’



10

I STUDY OF COMPLEX SYSTEMS
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» An optimizer O is an algorithm which proposes iteratively a new X based on the information
from previous trials in order to approximate the solution of the problem x = argmin(f(x))
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I STUDY OF COMPLEX SYSTEMS
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» An optimizer O is an algorithm which proposes iteratively a new X based on the information
from previous trials in order to approximate the solution of the problem x = argmin(f(x))

» The cost of the optimization is linked with the number of calls to the simulator S which
evaluates f

XO
ﬁ

S
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I WHY DERIVATIVE FREE OPTIMIZATION ?

mmf(a:)

Simulator

f(x)

Optimizer

miny f (x)

f(x)

@ More and more complex simulators

@ black-box simulator (proprietary code or a simulation package)

derivatives of objective function are not available

@ numerical approximation of Vf (x) is expensive: finite-differences when computing f(x) is
expensive or for a high number of optimization variables x

@ computing f(x) is expensive: time consuming numerical simulations or experiments

» Need for optimization methods adapted to derivative free problems
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I DFO METHODS

@ (Standard derivative-based methods with approximate gradients)

@ Direct Search methods
@ Nelder Mead Simplex
@ Pattern Search

@ Surrogate optimization / model-based DFO methods
@ Local model of the objective function
@ Global model of the objective function

@ Stochastic DFO methods
@ Evolutionary strategies
@ Simulated annealing
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I APPROXIMATE GRADIENTS

k k
x® 4+ he;) — f(x
@ by finite differences (F.D.) inf(xk) ~ f( 1) f(x")
n+1 simulations per iteration h

@ by generalized finite derivatives (E.F.D.) Vf(xk) ~ (Ax)~1 (f(xk n Ax) — f(xk))
Ax is the perturbation matrix (for F.D. Ax = [,))

@ by an approximation model of the objective function
simulations from previous iterations + m (< n) new simulations

F(x¥+5s)=7f(x*)+gks ou F(x*+5s)=/Ff(x*)+ gks+sTHks
Vf(x*) =~ g*
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I APPROXIMATE GRADIENTS:

X5

FINITE DIFFERENCES
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I APPROXIMATE GRADIENTS:

X5

MODEL OF THE OBJECTIVE FUNCTION
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I APPROXIMATE GRADIENTS: MODEL OF THE OBJECTIVE FUNCTION
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I APPROXIMATE GRADIENTS: MODEL OF THE OBJECTIVE FUNCTION
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I APPROXIMATE GRADIENTS: MODEL OF THE OBJECTIVE FUNCTION
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I APPROXIMATE GRADIENTS: MODEL OF THE OBJECTIVE FUNCTION

X5

- €nergies
(lanouvellss
K-—/ '

23 | © 2020 IFPEN



I A CLASSICAL EXAMPLE FOR NL OPTIMIZATION

Rosenbrock function : min, ,y ((1 = z)2 4+ 10(z2 — y)?)

-0, i (‘f Energies
24 | © 2020 IFPEN B @nouvelles



I DERIVATIVE-BASED METHOD

Solution obtained with Newton method

14 iterations

(x*,y*) =
(1,000: 0,999)
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I DERIVATIVE-BASED METHOD

Solution obtained with BFGS method

53 iterations

(z*,y*) =
(0,995 0,990)
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I APPROXIMATE GRADIENTS
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Solution obtained with BFGS method

1,5 ——r—r—

92 simulations
(%, y*) =
(0,997;0,994)
h =103
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I APPROXIMATE GRADIENTS

@ Function-evaluation cost: (n 4+ 1) evaluations at each iteration

@ Difficulty to choose the finite difference step h
@ If noisy function = meaningless approximate gradients

» Convergence issues
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I DFO METHODS

@ Use only objective function values

@ No gradient approximation

@ Sample of points {x;};=1 ., simulations {x;};=1 ., = new iterate x*
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I DFO METHODS

® (Standard derivative-based methods with approximate gradients)

@ Direct Search methods
@ Nelder Mead Simplex
@ Pattern Search

@ Surrogate optimization / model-based DFO methods
@ Local model of the objective function
@ Global model of the objective function

@ Stochastic DFO methods
@ Evolutionary strategies
@ Simulated annealing
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DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm

@ based on the comparison of objective function values on a (n + 1) simplex:
flx1) < f(x2) . < f(xn41)

@ Attempt to improve the worst objective function value f (x;,,41):
Xn+1 is replaced by a point belonging to the line (i, x,,4+1)

-1 . :
with x = ;21;1 x;, centroid of the best n points

— expansion, reflection or contraction

- ’
L+t Xy

of the simplex at each iteration
(a) Reflection (b) Expansion (¢) Outside Contraction
L
Source : Richards (2010)
it x; Thsa &y
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I DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm
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I DIRECT SEARCH METHODS

Nelder-Mead simplex algorithm

@ Termination conditions:
@ function values at vertices are close to each other
@ or simplex becomes too small

@ Simulation cost:
@ k=0 and for any shrinkage step: (n + 1) evaluations
@ 1 or 2 evaluations for all other steps

@ Limited convergence results (only forn = 1 orn = 2)
see Torczon (1991) for other simplex methods with better convergence results

@ Lot of failure examples
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I DIRECT SEARCH METHODS

Linesearch derivative free methods: e.g. coordinate search method

x! =x%+ alel

x? =x1 + ale?

X = xn~1 4 gn-1pn-1
xMtl — 41 + alel

a’ is chosen to produce a sufficient decrease

f(x* + akek 1) < f(x*) — p(ak)

with p(t) = 0 increasing function of t, p(t)/t Py 0

= Inefficient: coordinate direction (almost) L Vf(xk)

— Efficient when the variables are essentially uncoupled X,
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I DIRECT SEARCH METHODS

Pattern search methods

@ Motivation: parallelisation of function evaluations
Instead of one search direction st(= e') in linesearch, explore a set of directions D¥

k 1 ,2 n 1 2 n
e.g. D" = {e*, e, ...,e", —e*, —e*,...,—e"}

@ At each iteration, for a given mesh step a:

@ Search step (OPTIONNAL): evaluate the objective function on a finite number of points
with any method: along a given direction, on a simplex, ...

@ Poll Step: if no better point if found in optionnal search step,
search for a better point in the D directions: x* + a*st, st € D¥

@ If no better point is found (no smaller function value):
xk*t1 = x* and decrease the mesh size a*

@ else x¥*1 = xk + a¥s! and increase the mesh size
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I DIRECT SEARCH METHODS

Pattern search methods

Source : Kolda et al. (2003)
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I DIRECT SEARCH METHODS

(o] (o]
Pattern search methods: DIRECT a . e 1 P T
@ = Dividing RECTangles
@ Divide each side of the « rectangle(s) » o0 06
associated with the smallest function values into
3 in order to define sub-rectangles ] I I I N B A e B R
@ Evaluate the center of the new rectangles o3 s ox os || o3| o3| o
@ Stopping criteria: minimal size of the rectangles
(=3 o Q6 a9 0 06 De
@ Global convergence for continuous functions it I R I S A s | e | o
. . o 5
. ngh evaluatlon cost loF o2 Os 03 [Q {Sz o| os oF cg?cl Qs

Source : Perttunen et al. (1993)
(ifP o
N
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I DIRECT ALGORITHM
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I DIRECT ALGORITHM

1,59

Last iterations
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I DIRECT SEARCH METHODS

Pattern search methods

@ Popular methods
@ Easy to implement
@ Easy to parallelize

@ But expensive in terms of simulations

@ often coupled with a surrogate model in the search step
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I DFO METHODS

® (Standard derivative-based methods with approximate gradients)

® Direct Search methods
® Nelder Mead Simplex
® Pattern Search

@ Surrogate optimization / model-based DFO methods
@ Local model of the objective function
@ Global model of the objective function

@ Stochastic DFO methods
@ Evolutionary strategies
@ Simulated annealing
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I SURROGATE OPTIMIZATION METHODS

Optimization methods based on a surrogate model of the objective function

@ to limit the number of evaluations of the objective functions
@ the model is updated during the iterations based on new simulations

@ The model is either global or local
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SURROGATE OPTIMIZATION METHODS

Global models

@ Design of experiment technique
choose evaluation points to be used to compute the initial model

space filling design (maximin criterion)

@ Regression
choose a model type

Gaussian process or kriging, Radial Basis Function (RBF), Neuronal Networks | )

@ Sampling criterion Ll P
choose new point(s) to evaluate for the update of the model
minimum of the current model, maximum of the error prediction ...
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

@ Assumption: the objective function is assumed to be a realization of a Gaussian
random process (GP) with parametric mean function and stationary covariance

function
F(x) = BTr(x) + Z(x)

/ \

Regression stochastic part
(e.g. polynomial d=1) zero-mean, stationary covariance
Covz(z,z') = azp(llfr z'[[)

—0(x—x')?

e.g. Covy(z,2') = o?e
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I SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

@ Assumption: the objective function is assumed to be a realization of a Gaussian
random process (GP) with parametric mean function and stationary covariance

function
F(x) = BTr(x) + Z(x)

@The surrogate model is the conditional
expectation of the GP

P = E(FOOI(x ), )
=BT r(x) + kT(X)K_l(Yp - R,B)

avec R = (rj(xi))l_j, K = (p(xl-,xj))ij, k(x) = (p(x, x1), ...,p(x, xp)) pre '
’ ’ P oivdice
o
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I SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

@ Assumption: the objective function is assumed to be a realization of a Gaussian
random process (GP) with parametric mean function and stationary covariance

function n=5 - Q% =0.77
o T M I © [ :Itsin
F(x) B ﬁ r(x) + Z(x) L 53n'||:[|j;te:I points
@The surrogate model is the conditional l St confidence interval|
expectation of the GP ol

=

P = E(FOOI(x ), )
=BT r(x) + kT(X)K_l(Yp - R,B)

@The variance of GP are used as error indicators
d%(x) =0? — kT(x)K kT (x)

avec R = (rj(xi))l_j, K = (p(xi,xj))ij, k(x) = (p(x, x1), ...,p(x, xp)) (’fPE '
’ ’ P oivdice
o
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SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging

n=a - Qz—lfl.'f'f
i X sinlx)

20

® @ Sample points
15F - Maan
95% confidence interval

X
n=0 - * =1.00

—122

| © 2020 IFPEN
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I SURROGATE OPTIMIZATION METHODS

Sampling criterion based on Expected Improvement (El)
a balance between exploration and minimization

P Kriging
S conf. int.

/ . ---- function
argmax(E | (x)) = E (I (x)) T 4 A \: \t N/
~ § F | A S !
=K (maX(O; fmin — F(x ))) _’ F s ,:"J e ,#E ti
= A PR
N\ / f L% | |« DOE
- 4 next point
» EGO (Efficient Global Optimization)
or Bayesian Optimization
EL
| | | | |
1.0 05 0.0 05 1.0
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I SURROGATE OPTIMIZATION METHODS

Local models

@ Quadratic interpolation models built from a set of appropriately chosen sample points
F.(s) =cx+sTg, + isTHkS, s € B(xk,A) (trustregion) (TR)

with ¢, € R, g, € R™ and H, € R™ "™ (symmetric) that satisfy interpolation conditions:

Fie(x; — x%) = f(x;)

The matrix of linear system must be non-singular and well conditioned

@ Minimization of the quadratic model in the trust region ”nnaig F.(s)
Sli=Ak

@ Update the model with new evaluations

@ Improve the geometry of the interpolation set to help with the model interpolation step
One point is replaced by another one that improves the conditioning of the interpolation matrix
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I SURROGATE OPTIMIZATION METHODS

Local models

Let s;, be the solution of the (TR) minimization problem

@ Predicted model decrease £,(0) — F(s*) = f(x*) — F(s¥)
@ Actual function decrease f(x*) — f(x* + s¥)

ky_ ko ck
The trust region is updated according to the value of p; = f](:(cx,)() f(; (:i))
- Ik

@ If p,, > 7 (successful step): x*+1 = xk 4 sk Ak+1 > Ak

@ If p;, < 717 (unsuccessful step): x**1 = x¥*, A is reduced or the interpolation set is improved
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SURROGATE OPTIMIZATION METHODS

Local models

© 2020 IFPEN

@ objective function

quadratic model to be minimized

evaluation point
* solution of the QP

* point for model improvement

Trust Region
Minimal region

———\
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I SURROGATE OPTIMIZATION METHODS

Local models

unction
quadratic model to be minimized

e I I
G chlectve

3H evaluation point

* lution of the QP

* point for model improvement

" Trust Region

Minimal region

2 / w

| [ |
- Energies
# Qanauvgllss
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I SURROGATE OPTIMIZATION METHODS

Local models

| 1 1 I |
- . ) - €nergies
x (ifs
53 | © 2020 IFPEN @nouvellss



I SURROGATE OPTIMIZATION METHODS

Local models S —

quadratic model to be minimized
! evaluation point
* solution of the QP
* point for model improvement
Trust Region
Minimal region
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I SURROGATE OPTIMIZATION METHODS

Local models
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I SURROGATE OPTIMIZATION METHODS

Local models S —

quadratic model to be minimized
<] evaluation point

e solution of the QP

* point for model improvement
Trust Region

* Minimal region
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I SURROGATE OPTIMIZATION METHODS

Local models (TR DFO)
15—

86 simulations

(z*,y*) =
(1,001;1,002)

( 'f €nergies
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I SURROGATE OPTIMIZATION METHODS

Global models (Gaussian Process)

29 simulations

(x*,y*) =
(0,999: 0,999)

- €nergies
(lanouveIles
K‘_—/.

58 | © 2020 IFPEN



I DFO METHODS

® (Standard derivative-based methods with approximate gradients)

® Direct Search methods
® Nelder Mead Simplex
@® Pattern Search

@® Surrogate optimization / model-based DFO methods
® Local model of the objective function
® Global model of the objective function

@ Stochastic DFO methods
@ Evolutionary strategies
@ Simulated annealing
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I STOCHASTIC METHODS

Evolution strategies

@ Global optimization
@Very few assumptions on function regularity

@ Main principle

1. Random generation of initial population

2. Evaluation of each individual of current generation <+—
Reproduction: selection of the best individuals
Diversification: cross-over and mutation
Replacement : survival of the best individuals —
Repeat step 2 until satisfying solution is obtained

S 0nsW
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I STOCHASTIC METHODS

Evolution strategies

@ An example of a cross-over operator for continuous variables
Pair of individuals (x, y) selected randomly

(x,y) » ax + (1 —a)y, a~U([0;1])

@ An example of a mutation operator for continuous variables
addition of a Gaussian noise

X; = X; + U, ui~N(O, al-z),i =12, ..,n
o; is a critical parameter to tune
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I STOCHASTIC METHODS

Evolution strategies

@1/5-rule (Rechenberg)
@If t < 0.2, then o increases

@If t > 0.2, then o decreases
(where T = % of successful mutations over T generations)
»Can adapt one general step-size

»But no individual step size

@ Mutative step-size control
Strategy parameters (step-sizes) treated similarly to optimized parameters
» Facilitates adaptation of individual step-sizes

( 'f €nergies
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I STOCHASTIC METHODS

Evolution strategies

@Mutation operator m%g ~ A (m9), [¢(9)]2C(9))
Covariance matrix ~ inverse of a “global” Hessian matrix

@Select the u best individuals to compute the mean
@ update of

@the covariance matrix C'(9)
@the global standard deviation o(9)
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I STOCHASTIC METHODS

Evolution strategies vs. genetic algorithms

@ Main difference : in evolutionary strategies, only the best individuals are allowed
to reproduce (elitist selection)

@The parents can be included in the next generation

@Similar operators: mutation, cross-over
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I STOCHASTIC METHODS

Evolution strategies: CMAES method (Hansen)

Generation 1 Generation 20 Generation 30

- €nergies
(lanouvelles
K\/

65 | © 2020 IFPEN



I SURROGATE OPTIMIZATION METHODS

Evolution strategy; CMAES
1,5

370 simulations

(x*,y*) =
(1,008;1,007)

- Energies
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I SURROGATE OPTIMIZATION METHODS

Evolution strategy; CMAES
1,5 p——r—r—

170 last simulations

( 'f €nergies
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I STOCHASTIC METHODS

Simulated annealing

@ Principle: emulate the physical system of the cooling of a solid so that the frozen state is frozen for a
minimum energy configuration

@ At a given iteration, a new solution (state) x.,1 is determined from the previous solution (state) x;

@ randomly choose a neighbour of x;: y;
@ then, the new state is

( :

Vi I fe) < f(xx) fxeg)—f(v)
Xie1 = Vr if f(yi) > f(xg) with the probabilitye

Xk otherwise

@ t; (temperature of the system) is a decreasing sequence in order to decrease the probability to
accept a bad solution (increasing f) at last iterations

- €nergies
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I SURROGATE OPTIMIZATION METHODS

Simulated annealing: SIMPSA
15—

280 last simulations

(=*,y*) =
(0.989; 0.968)
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DFO METHODS

Benchmark Moré & Wild

| © 202

Mb. of solved pbJ/ Nb. of pb
o o o o o o o o o
- R W M Mm@ = @ o =

=

—— SQPALdAf-6——S0A 2n+1 —— NMSMAX —— CMAES ——EGO

SQPAL =SQP BFGS - FD
SQA = local surrogate optim
EGO = global surrogate optim (kriging)
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I DFO METHODS

Summary (I)

@ Classical methods with approximate gradients
» popular (do not change optimizer)
» but not adapted for large scale problem
» step size tuning is cumbersome

@ Direct Search methods
» revival of these methods with parallelization
» hybrid implementation (coupled with surrogate models)
» not adapted for large scale problems
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I DFO METHODS

Summary (1)

@ Surrogate optimization
@ Local interpolation model with TR
» can handle constraints (coupled with SQP)
» good performances in terms of number of function evaluations

@ Global models
» global methods

» not adapted for large scale problems:
needs a lot of evaluation to obtain a good accuracy
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I DFO METHODS

Summary (I11)

@ Evolutionary strategies / Simulated annealing
» no assumption on function regularities
» discrete optimization is possible
» global methods
» but expensive in terms of function evaluations
» difficulties to handle constraints
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I DFO METHODS

Global versus Local

@ Multi-start optimization
@ run a local method from several initial points
» well adapted for functions with a small number of local minima

» handles constraints

@ Global surrogate optimization (kriging, RBF, NN) / Evolutionary algorithms / Simulated
annealing

» not adapted for large scale problems:
needs a lot of evaluations to obtain a good accuracy

» difficulties for handling constraints
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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DFO methods

@ Course 2: various applications of DFO

@ Course 3: some challenges in DFO
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