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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: various applications of DFO

Course 3: some challenges in DFO
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CLASSIFICATION OF OPTIMIZATION APPLICATIONS

Parameter estimation for numerical simulations from experimental data
= data calibration

Inverse problems (geosciences)

Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

Optimal settings of experimental devices 

From experimental data: catalysis, engine calibration

From models: networks of oil pipelines

Optimal design

Wind turbine, risers, well placement, engine design
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DATA CALIBRATION

History matching, uncertainty reduction and propagation in reservoir 
characterization

Langouët et al., 2010, 12th European Conference on the Mathematics of Oil Recovery

→ Nonlinear derivative free constrained optimization problem
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RESERVOIR CHARACTERIZATION

For characterization of dynamic behavior of reservoir during the production of a field

Forward problem:

▪ Fluid flow simulation in reservoir

▪ Petro-elastic modelling

History matching from production data and 4D seismic data
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RESERVOIR CHARACTERIZATION

Characteristics of the optimization problem

min
𝑥

𝑓 𝑥 ≔ 𝑑𝑃 𝑥 − 𝑑𝑃
𝑜𝑏𝑠

𝐶𝑃

2
+ 𝑑𝑆 𝑥 − 𝑑𝑆

𝑜𝑏𝑠
𝐶𝑆

2

Nonlinear least-square problem

Data space: up to 1.000.000 measurements

Parameter space: ~10 up to 100 (various types)

Unavailable gradient

Simulation expensive in computational time
(1mn - hours) 
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PUNQ TEST CASE: 3D SYNTHETIC RESERVOIR

Parameters: 25 geostatiscal parameters
(porosity & permeability)

Data: 128436
127680 seismic data

756 production data from 6 wells (3 per well at 41 different days)

Nonlinear least-square problem

min
𝑥

𝑓 𝑥 ≔ 𝑑𝑃 𝑥 − 𝑑𝑃
𝑜𝑏𝑠

𝐶𝑃

2
+ 𝑑𝑆 𝑥 − 𝑑𝑆

𝑜𝑏𝑠
𝐶𝑆

2

Bound constraints
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PUNQ TEST CASE: 3D SYNTHETIC RESERVOIR

Reference data
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HISTORY MATCHING RESULTS
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POSTERIOR ANALYSIS OF THE INVERSION PROBLEM

From previous history matching result on 𝑇0, 𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡

forecast the oil production in the future 𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑇𝑓𝑢𝑡𝑢𝑟𝑒

→ SIMULATION

determine the extreme production scenarii 𝑑min
𝑖 , 𝑑m𝑎𝑥

𝑖 maintaining the calibration 
results on 𝑇0, 𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡

→ POSTERIOR UNCERTAINTY ANALYSIS
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POSTERIOR ANALYSIS OF THE INVERSION PROBLEM

From previous history matching result, forecast the oil production in the future via 
extreme scenarii

max
𝑥
/min

𝑥
𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡׬
𝑇𝑓𝑢𝑡𝑢𝑟𝑒 𝑑𝑖 𝑥, 𝑡 𝑑𝑡

s.t. 𝑑 𝑥 − 𝑑𝑜𝑏𝑠
𝑇0,𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡

2
≤ (1 + 𝜖𝑟𝑒𝑙) 𝑑 𝑥𝐻𝑀 − 𝑑𝑜𝑏𝑠

𝑇0,𝑇𝑝𝑟𝑒𝑠𝑒𝑛𝑡

2

→ Nonlinear derivative free constrained optimization problem

Cumulated oil production

History matching constraint

Derivative free

= constant
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POSTERIOR ANALYSIS OF THE INVERSION PROBLEM

Various values of 𝜖𝑟𝑒𝑙
5, 10, 20, 30
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CONCLUSIONS

DFO methods used

For data calibration

For posterior uncertainty analysis: define extreme scenarios of oil production

= alternative to statistical Bayesian calibration (estimation of the whole posterior
uncertainty distribution)



15 |   ©  2 0 2 0   I F P E N

CLASSIFICATION OF OPTIMIZATION APPLICATIONS

Parameter estimation for numerical simulations from experimental data
= data calibration

Inverse problems (geosciences)

Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

Optimal design

Wind turbine, risers, well placement, engine design

Optimal settings of experimental devices 

From experimental data: catalysis, engine calibration

From models: networks of oil pipelines
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OPTIMAL SETTINGS OF EXPERIMENTAL DEVICES

Engine calibration

D. Sinoquet, H. Langouët, G. Font, S. Magand, F. Chaudoye and M. Castagné, ICCOPT, 2010

→ a constrained derivative free optimization problem with an adapted parametrization
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ENGINE CALIBRATON: PRINCIPLE

Optimization of the engine parameters with respect to several criteria as fuel 
consumption, pollutant emissions, noise, drivability along a given driving cycle

Deliverables : calibration maps (one for each parameter) to be implemented in 
the Engine Control Unit (ECU) in the vehicle
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ENGINE CALIBRATON: PRINCIPLE
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ENGINE CALIBRATON: PRINCIPLE
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TWO MAIN FORMULATIONS

OP formulation
at given reference engine Operating Points, optimize the
engine tunings with respect to the pollutant emissions of the
engine at this OP

+ a posteriori smoothing step
(drivability, feasibility)  → engine maps

Map formulation
optimize the maps of the engine tunings 
w.r.t. the pollutant emissions of the engine
cumulated along the given driving cycle

regularity constraints on maps (drivability, feasibility)
are introduced in optimization problem
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TWO MAIN FORMULATIONS

OP formulation
+ simple modeling phase (polynomial models), small size optimization problems

− but a posteriori smoothing step may destroy optimization work

− OP optimization problem is valid for only one vehicle configuration

Map formulation
− complex DOE and modeling steps : models valid on the whole operating domain (kriging / 

RBF)

+ provides directly the engine maps

+ optimization for different vehicle applications may be processed wo. any additional 
experimental tests
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FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine 
cumulated along the given driving cycle

Global engine responses modeled on 
the operating domain (depending on 
engine speed r and engine torque c) 
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MODELING THE ENGINE RESPONSES

Statistical models: kriging
response surfaces built from experimental data on the engine test bench (stabilized 
measurements)

Physical models: (AMESim) modeling the behavior of the vehicle (control) and the 
transient behavior of the engine during combustion

➢ Combine the 2 models to obtain more accurate predictions of the pollutant emissions 
and the engine noise
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FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine 
cumulated along the given driving cycle

Constraints of parameter variation 
domain on the operating domain 
(depending on r and c)
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FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine 
cumulated along the given driving cycle
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ADAPTED MAP PARAMETERIZATION

A flexible parameterization to represent shapes of the different engine maps
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ADAPTED MAP PARAMETERIZATION

A flexible parameterization to represent shapes of the different engine maps

Limit the number of parameters for optimization
Number of parameters = ∑ number of map parameters

Ability to control the map regularity
feasibility, drivability 

➢LoLiMoT functions: Local Linear Model Tree
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ADAPTED MAP PARAMETERIZATION

LoLiMoT functions

➢𝜶 controls the global regularity of the map

normalized Gaussian validity
functions of local models
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MAP OPTIMIZATION

A constrained derivative free optimization problem

Derivative free objective function

Derivative free constraints: constraints on the responses of the simulator

20-1000 LoLiMoT parameters to represent engine maps

➢Trust region derivative free method
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APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

1 single objective: CO2 emissions cumulated on an acceleration extracted from a 
legislative driving cycle 

4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps
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= 28 LoLiMoT parameters
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3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)
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APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

1 single objective: CO2 emissions cumulated on an acceleration extracted from a 
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4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

Linear constraints that define parameter variation limits depending on engine speed 
and load

Robustness constraints that take into account parameter dispersions in the 
optimization process (avoid boundaries of the parameter variation domain)
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APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

1 single objective: CO2 emissions cumulated on an acceleration extracted from a 
legislative driving cycle 

4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

Linear constraints that define parameter variation limits depending on engine speed 
and load

Robustness constraints that take into account parameter dispersions in the 
optimization process (avoid boundaries of the parameter variation domain)

Engine responses
AmeSim models coupled with kriging models = 12mn/simulation
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APPLICATION OF MAP OPTIMIZATION
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APPLICATION OF MAP OPTIMIZATION

Derivative Free Constraint on CO
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APPLICATION OF MAP OPTIMIZATION
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APPLICATION OF MAP OPTIMIZATION
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CONCLUSIONS

Engine map optimization based on physical models coupled with response surfaces built 
from experimental data

Adapted parameterization of the maps

A constrained derivative free optimization problem

Trust region DFO method gives encouraging results on this real calibration problem
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CLASSIFICATION OF OPTIMIZATION APPLICATIONS

Parameter estimation for numerical simulations from experimental data
= data calibration

Inverse problems (geosciences)

Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

Optimal settings of experimental devices 

From experimental data: catalysis, engine calibration

From models: networks of oil pipelines

Optimal design

Wind turbine, risers, well placement, engine design
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OPTIMAL DESIGN

Design of of mooring lines of floating offshore wind turbines

D. Sinoquet, Martin Guiton, Yann Poirette, workshop DFO, 2016

→ a derivative free optimization problem with multiple constraints
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OFFSHORE WIND MARKET : GENERAL CONTEXT

The offshore wind market is growing 
rapidly thanks to several drivers :

important wind resources

lower turbulence offshore 

reduced visual impact

The offshore wind market is moving into 
deeper waters with bigger turbines for 
which floating foundations become 
economically attractive. 

source : NREL
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IFPEN’S OBJECTIVE AND APPROACH

The objective of IFPEN is to participate in the 
development of floating offshore wind turbines

by proposing reliable solutions with adapted 
technologies to lower the cost

by offering a set of solutions for floaters and mooring 
technologies adapted to solve technical and economic 
challenges of offshore environment

dnv gl.com

Clump mass

Chain

Fairlead

Buoyancy module

Cable (steel or synthetic)  

Chain

Anchor
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APPLICATION TEST CASE

Design the mooring system for a cylindrical platform

6 catenary lines grouped by pairs
a part of each line lies on the sea floor

Buoyancies to reduce cable tension 
or additional mass

Elastic element at the head of each line

Line material : chain, steel cable, polyester,  
high density polyethylene

For a wind turbine 

3.6𝑀𝑊

Total weight : 210𝑡

127𝑚 high 
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APPLICATION TEST CASE

Simulation with DeeplinesTM : FE solver
Computes the dynamic response of the mooring lines given the hydrodynamic
behavior of the floater

Design with respect to extreme load conditions
2 cases : producing or parked wind turbine 

with co-directional wind and waves
Wind load modelled by thrust loads on the gravity center of the rotor and on the tower
reference wind speed : 42.5m/s – for parked turbine –

Wave load modelled by an energy spectral density 
(JONSWAP spectra from real measures in North sea) 
𝐻𝑠, reference wave amplitude  and 𝑇𝑝, associated period  – (𝐻𝑠 = 10m, 𝑇𝑝= 14s) for parked turbine –
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APPLICATION TEST CASE

9 design parameters

Length of the lines (m) : 𝑳

Line weight (kg/m) : 𝒎𝑳

Projected distance between anchor and floater (m) : 𝑫

Angle between the 2 lines of the pairs (°) : 𝜶

Weight of the buoy or additional mass (< 0 if buoy) (t) : 𝒎𝒃

Buoy/mass location along the line (m) : 𝒛𝒃
Elastic element described by 3 parameters

+ Bound constraints

+ 3 inequality constraints coupling some design parameters

𝑊𝐷=50m

𝑫

3 parameters

2 parameters: 𝑳,𝒎𝑳

2 parameters: 𝒛𝒃,𝒎𝒃
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APPLICATION TEST CASE

Objective to be minimized : cost of the mooring system

𝑓 𝑥 = 𝑛𝑙𝑖𝑛𝑒𝑠 𝐶𝐶𝐿𝐶𝑖
line cost

+ 𝑛𝑙𝑖𝑛𝑒𝑠 𝐶𝑏 𝑚𝑏

mass/buoy cost

Inequality constraints on DeeplinesTM simulator outputs
vertical angle of the lines 𝛽𝑖 ≥ 10°

line tension 0 ≤ 𝑇𝑖 𝑠 ≤ 60%𝐵𝐶
vertical location of the buoys/mass  −𝑊𝐷 ≤ 𝑍𝑖 ≤ 0

vertical location of the end point of the line (sea floor) 𝑍max𝑖 +𝑊𝐷 ≤ 0.2𝑚

horizontal displacement of the floater 𝐻offset ≤ 15𝑚

floater incline 𝜓 ≤ 15°

For each line

ቋ For the floater
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OPTIMIZATION PROBLEM

Black-Box constrained optimization problem

min
𝑥

𝑓(𝑥)

s.t. ቐ
𝑙 ≤ 𝑥 ≤ 𝑢
𝐶𝐷𝐵 𝑥 ≤ 0
𝐶𝐷𝐹(𝑥) ≤ 0

derivative based constraints
derivative free constraints

1 simulation ~ 45mn

9 design parameters

3 nonlinear “derivative based” constraints

32 “derivative free” constraints

➢ requires an adapted derivative free optimization method
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Design parameters along iterations

2𝑛 + 1
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Objective function and constraints  𝐶𝐷𝐹(𝑥) ≤ 0
along iterations

1

2

3

4

5

6

wind
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Dynamic simulations of the solution design



52

N E W    E N E R G I E S

52 |   ©  2 0 2 0   I F P E N

CONCLUSIONS

First optimization results :
design of mooring lines reliable to extreme conditions for parked turbine

Two constraints are active at the solution
Minimal tension constraint for the 2 upwind lines 
Maximal displacement constraint : 1m over the threshold

Limited cost reduction (3%) compared to the (unfeasible) initial point because of the active 
constraints

To go further 

add some additional parameters to distinguish the upwind lines from the downwind lines 
(different lengths and lump mass)

run optimization from different initial points (Latin hypercube design)

Evaluate other optimization methods (EGO, Nomad …)
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OUTLOOK

Additional design parameters : integer or categorical variables
number of buoyancies or mass

type of material : chain / steel / cable polyester / high density polyethylene

➢ extension of trust region DFO method for mixed integer variables (course 3)

Design of the mooring system according to its resistance against the fatigue
➢ avoid the ruin caused by accumulated damages during the lifespan of the system

➢ reliability to fatigue chance constraint

ℙ𝜉 𝑔 𝑥, 𝜉, 𝑋𝐿𝑇 > 𝑠 ≤ 𝑝

𝜉 random variables modelling the fatigue behaviour of the structure
𝑋𝐿𝑇 a given long term behaviour of the environmental conditions (sea state)
𝑔(𝑥, 𝜉, 𝑋𝐿𝑇) damage caused by 𝑋𝐿𝑇
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REAL APPLICATIONS OF DFO 

Relevant choice of parameterization

Cost of simulations
➢Practitionners are interested in the best solution in a given simulation budget

➢Stopping criteria based on an objective target and a maximal number of simulations

Often multiple derivative free constraints
➢For optimal design, one looks for feasible solutions

Uncertainties
➢For data calibration: deal with data uncertainties and estimation of posterior uncertainties

➢Optimal design: notion of robustness, fiability regarding uncertainties (c.f. Didier Lucor’s talk)
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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: various applications of DFO

Course 3: some challenges in DFO


