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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DFO methods

@ Course 2: various applications of DFO

@ Course 3: some challenges in DFO
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I CLASSIFICATION OF OPTIMIZATION APPLICATIONS

@ Parameter estimation for numerical simulations from experimental data
= data calibration

@Inverse problems (geosciences)

@ Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

@ Optimal settings of experimental devices
@From experimental data: catalysis, engine calibration
@ From models: networks of oil pipelines

@ Optimal design
@ Wind turbine, risers, well placement, engine design
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I CLASSIFICATION OF OPTIMIZATION APPLICATIONS

(@Parameter estimation for numerical simulations from experimental data )
= data calibration

@Inverse problems (geosciences)

@ Parameter estimation for complex models
\_ (combustion simulation for engines, kinetic models) )

@ Optimal settings of experimental devices
@From experimental data: catalysis, engine calibration
@ From models: networks of oil pipelines

@ Optimal design
@ Wind turbine, risers, well placement, engine design
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DATA CALIBRATION

@History matching, uncertainty reduction and propagation in reservoir
characterization

Langouét et al., 2010, 12th European Conference on the Mathematics of Oil Recovery

- Nonlinear derivative free constrained optimization problem

I” 5
/ 1/
/
/! 1
{ |
gt i

(a) WCUT

mmmmmmmm

| © 2020 IFPEN

- €nergies
(lanouveIles
K‘_—/’



I RESERVOIR CHARACTERIZATION
History matching from production data and 4D seismic data

For characterization of dynamic behavior of reservoir during the production of a field
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I RESERVOIR CHARACTERIZATION

Characteristics of the optimization problem
: — __ obs 2 __ Jobs 2
mxlnf(x) = ”dp(x) dp ”Cp T ||d5(x) ds ”Cs

@ Nonlinear least-square problem

@ Data space: up to 1.000.000 measurements

@ Parameter space: ~10 up to 100 (various types)
@ Unavailable gradient

@ Simulation expensive in computational time
(1mn - hours)
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I PUNQ TEST CASE: 3D SYNTHETIC RESERVOIR

@ Parameters: 25 geostatiscal parameters
(porosity & permeability)

@ Data: 128436
@ 127680 seismic data

@ 756 production data from 6 wells (3 per well at 41 different days)

@ Nonlinear least-square problem
. 2
min f (x) = [|dp (x) — dB” |+ [|ds(x) — dg™*

@ Bound constraints

| © 2020 IFPEN
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PUNQ TEST CASE: 3D SYNTHETIC RESERVOIR

Reference data
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HISTORY MATCHING RESULTS
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I POSTERIOR ANALYSIS OF THE INVERSION PROBLEM

From previous history matching result on [Ty, Tyresen]

@ forecast the oil production in the future [Tmesent, Tfuture]
- SIMULATION

@ determine the extreme production scenarii [dL,;,,, db 4. | maintaining the calibration

results on |Ty, Tyresent]
—> POSTERIOR UNCERTAINTY ANALYSIS
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I POSTERIOR ANALYSIS OF THE INVERSION PROBLEM

From previous history matching result, forecast the oil production in the future via
extreme scenarii

. T ;
max,/ min fT future gi(x t)dt Cumulated oil production
X X present

Derivative free

/

2

History matching constraint

| S[(l -+ Erel)“d(xHM) - dObS”

2

s.t. ||d(x) — dobs|

]] = constant

To,Tpresent [ToyTpresent

- Nonlinear derivative free constrained optimization problem
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Cumulated cil production (millionz of m3)

POSTERIOR ANALYSIS OF THE INVERSION PROBLEM
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I CONCLUSIONS

DFO methods used
@ For data calibration

@ For posterior uncertainty analysis: define extreme scenarios of oil production

= alternative to statistical Bayesian calibration (estimation of the whole posterior
uncertainty distribution)
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I CLASSIFICATION OF OPTIMIZATION APPLICATIONS

@ Parameter estimation for numerical simulations from experimental data

= data calibration
@Inverse problems (geosciences)

@ Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

@ Optimal design
@ Wind turbine, risers, well placement, engine design

[.Optimal settings of experimental devices

. @ From models: networks of oil pipelines

\

@ From experimental data: catalysis, engine calibration

J
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I OPTIMAL SETTINGS OF EXPERIMENTAL DEVICES

@Engine calibration

D. Sinoquet, H. Langouét, G. Font, S. Magand, F. Chaudoye and M. Castagné, ICCOPT, 2010

- a constrained derivative free optimization problem with an adapted parametrization
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(lanouveIlss
K\—/'

16 | © 2020 IFPEN



I ENGINE CALIBRATON: PRINCIPLE

@ Optimization of the engine parameters with respect to several criteria as fuel
consumption, pollutant emissions, noise, drivability along a given driving cycle

@ Deliverables : calibration maps (one for each parameter) to be implemented in
the Engine Control Unit (ECU) in the vehicle

Main injection timing
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ENGINE CALIBRATON: PRINCIPLE
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ENGINE CALIBRATON: PRINCIPLE
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TWO MAIN FORMULATIONS

@ OP formulation

at given reference engine Operating Points, optimize the
engine tunings with respect to the pollutant emissions of the
engine at this OP

+ a posteriori smoothing step
(drivability, feasibility) = engine maps

@ Map formulation

optimize the maps of the engine tunings
w.r.t. the pollutant emissions of the engine
cumulated along the given driving cycle

regularity constraints on maps (drivability, feasibility)
are introduced in optimization problem

| © 2020 IFPEN
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I TWO MAIN FORMULATIONS

@ OP formulation
+ simple modeling phase (polynomial models), small size optimization problems
— but a posteriori smoothing step may destroy optimization work
— OP optimization problem is valid for only one vehicle configuration

@ Map formulation

— complex DOE and modeling steps : models valid on the whole operating domain (kriging /
RBF)

provides directly the engine maps

optimization for different vehicle applications may be processed wo. any additional
experimental tests

_|_
_I_
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I FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine
cumulated along the given driving cycle

4
min /O F (r(b), c(t), mP(r(t), (b)) dt

mPeM
— T
(p_ (Fl’_FQA""ITTD { subject to
mi e MERE R [(r,c) < AmP(r,c) < u(r,c)
A ig
Global engine responses modeled on /O Fi{r(t), e(t),m" (F(L),c(t) ) ) di < 8
\

the operating domain (depending on

) , + regularity constraints on maps
engine speed I and engine torque C)

for drivability / feasibility
(2nd derivatives of maps)
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I MODELING THE ENGINE RESPONSES

@ Statistical models: kriging
response surfaces built from experimental data on the engine test bench (stabilized
measurements)

@ Physical models: (AMESim) modeling the behavior of the vehicle (control) and the
transient behavior of the engine during combustion

» Combine the 2 models to obtain more accurate predictions of the pollutant emissions
and the engine noise

- €nergies
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I FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine
cumulated along the given driving cycle

min / F (r(b), c(t), mP(r(t), (b)) dt

mPeM

F = (F,Fo,...,Fp)t
mPGMZRQ—%RNP

\\

subject to
l(’r z) L AmP{r,e) < ulr,e)

/O F(r(t), e(t), mP{r (L), e(D))) dt < 8

+ regularity constraints on maps
for drivability / feasibility
(2nd derivatives of maps)

Constraints of parameter variation
domain on the operating domain
(depending on r and c)

\

( fP Energies
K ouvelles

24 | © 2020 IFPEN



I FORMULATION OF THE MAP OPTIMIZATION

Optimize the maps of the engine tunings with respect to the pollutant emissions of the engine
cumulated along the given driving cycle

4
min /O F (r(b), c(t), mP(r(t), (b)) dt

mPeM

F = (F,Fo,...,Fp)t
mPGMZRQ—%RNP

\\

subject to
ilr,e) < AmPlr,e) < ulr,e)

/OTF (T‘(t), C(t), mp(’l“(‘[;), C(t))) dt < S

+ regularity constraints on maps
for drivability / feasibility
(2nd derivatives of maps)

\
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ADAPTED MAP PARAMETERIZATION

A flexible parameterization to represent shapes of the different engine maps

Main injection timing Fuel injection pressure Pilot fuel injection quantity Pilot fuel injection timing

- Energies
Qanouvg’lss
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I ADAPTED MAP PARAMETERIZATION
A flexible parameterization to represent shapes of the different engine maps

@ Limit the number of parameters for optimization
Number of parameters = > number of map parameters

@ Ability to control the map regularity
feasibility, drivability

> LoLiMoT functions: Local Linear Model Tree

- €nergies
(lanouveIles
K‘_—/.

27 | © 2020 IFPEN



ADAPTED MAP PARAMETERIZATION

LoLiMoT functions
N
y= > _ yi(r,c)®;(r,c)
i=1
g;(r, c) = wo; + wpir + weic

pi (7, €)

PP e) = normalized Gaussian validity

N
functions of local models
Z ,LLj(’I“, C)
1

J:

L (r = T,L-O)Q

pi(r, €) = exp (— (

2« 077;2

¢ — 02
4 z))

c2
g;

» a controls the global regularity of the map

= Energies
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I MAP OPTIMIZATION
A constrained derivative free optimization problem
@ Derivative free objective function
@ Derivative free constraints: constraints on the responses of the simulator

@ 20-1000 LoLiMoT parameters to represent engine maps

» Trust region derivative free method

- €nergies
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APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

@ 1 single objective: CO, emissions cumulated on an acceleration extracted from a
legislative driving cycle

@ 4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

Main injection timing Fuel injection pressure Pilot fuel injection quantity Pilot fuel injection timing

10000 « o :
8000 J.i---" 7 ;
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4000 J-j- T

S 1000 (_ )
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I APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

@ 1 single objective: CO, emissions cumulated on an acceleration extracted from a
legislative driving cycle

@ 4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

@ 3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

- €nergies
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I APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

@ 1 single objective: CO, emissions cumulated on an acceleration extracted from a
legislative driving cycle

@ 4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

Linear constraints that define parameter variation limits depending on engine speed
and load

- €nergies
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I APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

@ 1 single objective: CO, emissions cumulated on an acceleration extracted from a
legislative driving cycle

@ 4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

Linear constraints that define parameter variation limits depending on engine speed
and load

@ Robustness constraints that take into account parameter dispersions in the
optimization process (avoid boundaries of the parameter variation domain)

- €nergies
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I APPLICATION OF MAP OPTIMIZATION

on a turbo-charged direct injection diesel engine

34 | © 2020 IFPEN

1 single objective: CO, emissions cumulated on an acceleration extracted from a
legislative driving cycle

4 engine control parameters (controlling the injection)
= 28 LoLiMoT parameters
LoLiMoT parameterization defined from reference maps

3 inequality constraints on pollutant emissions and noise (CO,Nox, noise)

Linear constraints that define parameter variation limits depending on engine speed
and load

Robustness constraints that take into account parameter dispersions in the
optimization process (avoid boundaries of the parameter variation domain)

Engine responses
AmeSim models coupled with kriging models = 12mn/simulation

- €nergies
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I APPLICATION OF MAP OPTIMIZATION

INITIAL OPTIMIZED CONSTRAINT
CO2 (g) 128,26 126,88 minimized
CO (9) 262,86 205,46 315,44
NOXx (g) 626,29 733,02 751,54
Noise (dBA.s) 6,42 6,29 6,42
CPU time: ~14h
CO (g) Initial maps
— Optimized maps
NOXx (g) CO2(g)

35 | © 2020 IFPEN
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APPLICATION OF MAP OPTIMIZATION

CO2 minimization Derivative Free Constraint on noise
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APPLICATION OF MAP OPTIMIZATION

CO2 minimization Derivative Free Constraint on noise
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APPLICATION OF MAP OPTIMIZATION

INITIAL

Main injection timing

OPTIMIZED

| © 2020 IFPEN
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I CONCLUSIONS

@ Engine map optimization based on physical models coupled with response surfaces built
from experimental data

@ Adapted parameterization of the maps
@ A constrained derivative free optimization problem

@ Trust region DFO method gives encouraging results on this real calibration problem
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I CLASSIFICATION OF OPTIMIZATION APPLICATIONS

@ Parameter estimation for numerical simulations from experimental data
= data calibration

@Inverse problems (geosciences)

@ Parameter estimation for complex models
(combustion simulation for engines, kinetic models)

@ Optimal settings of experimental devices
@From experimental data: catalysis, engine calibration
@ From models: networks of oil pipelines

@ Optimal design
@ Wind turbine, risers, well placement, engine design

40 | © 2020 IFPEN
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I OPTIMAL DESIGN

@ Design of of mooring lines of floating offshore wind turbines

D. Sinoquet, Martin Guiton, Yann Poirette, workshop DFO, 2016

- a derivative free optimization problem with multiple constraints

- Energies
Qanouvg’lss
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I OFFSHORE WIND MARKET : GENERAL CONTEXT

NEW ENERGIES

@ The offshore wind market is growing
rapidly thanks to several drivers :

@ important wind resources
@ lower turbulence offshore |
@ reduced visual impact |

@ The offshore wind market is moving into , - -,
deeper waters with bigger turbines for . i
which floating foundations become
economically attractive.

Demonstration

source : NREL
(ifeergies
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IFPEN'S OBJECTIVE AND APPROACH

@ The objective of IFPEN is to participate in the
development of floating offshore wind turbines

@ by proposing reliable solutions with adapted
technologies to lower the cost

@ by offering a set of solutions for floaters and mooring
technologies adapted to solve technical and economic
challenges of offshore environment

| © 2020 IFPEN

NEW ENERGIES

Fairlead

Buoyancy module

Cable (steel or synthetic)

Chain

Anchor Clump mass



APPLICATION TEST CASE

Design the mooring system for a cylindrical platform

@ 6 catenary lines grouped by pairs l

a part of each line lies on the sea floor / \\
@ Buoyancies to reduce cable tension e /
or additional mass X .

@ Elastic element at the head of each line

@ Line material : chain, steel cable, polyester,
high density polyethylene

@ For a wind turbine
@ 3.6MW
@ Total weight : 210t
@ 127m high

44 | © 2020 IFPEN



APPLICATION TEST CASE

NEW ENERGIES

@ Simulation with Deeplines™ : FE solver

@ Computes the dynamic response of the mooring lines given the hydrodynamic
behavior of the floater

@ Design with respect to extreme load conditions
@ 2 cases : producing or parked wind turbine

@ with co-directional wind and waves

@ Wind load modelled by thrust loads on the gravity center of the rotor and on the tower
reference wind speed : 42.5m/s — for parked turbine —

@ Wave load modelled by an energy spectral density
(JONSWAP spectra from real measures in North sea)
Hy, reference wave amplitude and T, associated period — (Hg = 10m, T,= 14s) for parked turbine —

(‘f Energies
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I APPLICATION TEST CASE

NEW ENERGIES

3 parameters

9 design parameters
@ Length of the lines (m) : L
@ Line weight (kg/m) : m;

@ Projected distance between anchor and floater (m) : D
WD=510m

@ Angle between the 2 lines of the pairs (°) : &
2 parameters: z;,, my,

@ Weight of the buoy or additional mass (< 0 if buoy) (t) : m,,

@ Buoy/mass location along the line (m) : Zy, | 2 parameters: L, my

@ Elastic element described by 3 parameters s — .

+ Bound constraints
+ 3 inequality constraints coupling some design parameters

- €nergies
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I APPLICATION TEST CASE

NEW ENERGIES

@ Objective to be minimized : cost of the mooring system

f (%) = Niines Ccle; + Niines Cplmy|
N—— N— ——
line cost mass/buoy cost

@ Inequality constraints on Deeplines™ simulator outputs

@ vertical angle of the lines |B;| = 10° )

@ line tension 0 <T;(s) < 60%B _

@ vertical location of the buoys/mass —-Wp <Z; <0 For each line
@ vertical location of the end point of the line (sea floor) IZmaXi + Wp| <0.2m )

@ horizontal displacement of the floater H  ffset < 156m } For the floater
@ floater incline Y| < 15°

- €nergies
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OPTIMIZATION PROBLEM

NEW ENERGIES

Black-Box constrained optimization problem

min f(x)
X
[<x<u
st. { Cpg(x) <0 derivative based constraints
Cpr(x) <0 derivative free constraints

@ 1 simulation ~45mn

@ 9 design parameters

@ 3 nonlinear “derivative based” constraints
@ 32 “derivative free” constraints

» requires an adapted derivative free optimization method

- €nergies
(ifPes
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Design parameters along iterations

2n+1

NEW ENERGIES
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Objective function and constraints Cpr(x) < 0
along iterations ENERGIES
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Dynamic simulations of the solution design
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CONCLUSIONS

NEW ENERGIES

@ First optimization results :
design of mooring lines reliable to extreme conditions for parked turbine

@ Two constraints are active at the solution
@ Minimal tension constraint for the 2 upwind lines
@ Maximal displacement constraint : 1m over the threshold

@ Limited cost reduction (3%) compared to the (unfeasible) initial point because of the active
constraints

To go further

@ add some additional parameters to distinguish the upwind lines from the downwind lines
(different lengths and lump mass)

@ run optimization from different initial points (Latin hypercube design)
@ Evaluate other optimization methods (EGO, Nomad ...)
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I OUTLOOK

NEW ENERGIES

@ Additional design parameters : integer or categorical variables
@ number of buoyancies or mass
@ type of material : chain / steel / cable polyester / high density polyethylene
» extension of trust region DFO method for mixed integer variables (course 3)

@ Design of the mooring system according to its resistance against the fatigue
» avoid the ruin caused by accumulated damages during the lifespan of the system
> reliability to fatigue chance constraint

Pf(g(x' €'XLT) > S) = p

¢ random variables modelling the fatigue behaviour of the structure
X;r a given long term behaviour of the environmental conditions (sea state)
g(x, &, X;7) damage caused by X; 1
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REAL APPLICATIONS OF DFO

@ Relevant choice of parameterization

@ Cost of simulations
» Practitionners are interested in the best solution in a given simulation budget
» Stopping criteria based on an objective target and a maximal number of simulations

@ Often multiple derivative free constraints
» For optimal design, one looks for feasible solutions

@ Uncertainties
» For data calibration: deal with data uncertainties and estimation of posterior uncertainties

» Optimal design: notion of robustness, fiability regarding uncertainties (c.f. Didier Lucor’s talk)
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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DFO methods

@ Course 2: various applications of DFO

@ Course 3: some challenges in DFO
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