DERIVATIVE FREE OPTIMIZATION
AND APPLICATIONS
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COURSE 3: SOME CHALLENGES IN DFO
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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DFO methods

@ Course 2: various applications of DFO

@ Course 3: some challenges in DFO
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I CHALLENGES IN DFO

@ Dealing with mixed continuous and discrete variables

@ Extension of trust region derivative free method
@ Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

@ Dealing with uncertainties
@ 1 practical example
@ Didier Lucor’s course: introduction to optimization under uncertainty
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ Motivations: some optimal design problems lead to optimization problem with discrete
variables as, for instance,

@ the number of componants — integer variables,
@ the type of materials — categorical variables, often non ordered variables,
@ the presence or not of some componants — binary variables.

2 main classes of applications of optimization with mixed continuous and discrete variables

@ with engineering models
@ depend typically on a limited number of variables of interest (~several dozens),
@ most of the variables are continuous and a few are discrete,
@ require to solve complex systems of equations (e.g. PDE).

@ with heterogeneous models with numerous sub-systems
@ with a very large number of discrete variables,
@ for instance, number of units of a chemical process or of a network, or binray choices on/off ...
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ Motivations: some optimal design problems lead to optimization problem with discrete
variables as, for instance,

@ the number of componants — integer variables,
@ the type of materials — categorical variables, often non ordered variables,
@ the presence or not of some componants — binary variables.

2 main classes of applications of optimization with mixed continuous and discrete variables

(@ with engineering models N
@ depend typically on a limited number of variables of interest (~several dozens),
@ most of the variables are continuous and a few are discrete,

\_ @ require to solve complex systems of equations (e.g. PDE). )

@ with heterogeneous models with numerous sub-systems
@ with a very large number of discrete variables,
@ for instance, number of units of a chemical process or of a network, or binray choices on/off ...
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@], = {1, ..., m;} numerical representation of the discrete variable y;

min_f(x,y)
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I SOME APPLICATIONS OF MIXED DISCRETE DFO

@ Optimize the well placement and opening schedule for oil/gaz production fields
Lizon et al. (2014)

@ Maximize a turbo-machine efficiency and minimize the vibrations by modifying the
blades shapes for a helicopter engine
Tran et al. (2021)

@ Design offshore wind turbine platform, optimize wind turbine layout
on-going work (ANR project Samourai)

» All these industrial problems involve costly to evaluate simulators solving hydro-dynamic,
aero-dynamic, fluid flow, solid mechanics equations

- €nergies
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I MODEL-BASED DFO METHODS

Remember 15t course on DFO

Simulator

“p

@ Generate an initial set of points (DoE)

— @Build a local or global model

@ Use an improvement criteria based on the model
to propose a new point to evaluate

@ Improve the model (exploration)

@ Go toward optimum (exploitation)

—— @ Add the point to the DoE, update the model and
iterate until simulation budget or other stopping
criteria are reached

Simulator

R . Y
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I TRUST REGION DFO (LOCAL MODEL)

@ Initial interpolation step

— @ Build/update a quadratic interpolation model
+ Model improvement step

@ Solve QP problem in the current trust region

@ Add new simulations
f(x®)=f(xF+sk)

____ @Validation according to p;, = ()= Fr(s9)
k

@ Update the trust region, the current TR center

@ Stop when the TR size is too small

| © 2020 IFPEN
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TRUST REGION DFO

Extended to mixed continuous and binary variables
(Conn et al, 2016)

@ Initial interpolation set in mixed space

@ Build a quadratic interpolation model w.r.t both
mixed variables

@ Model improvement step (MIQP)

@ First minimization problem w.r.t. continuous
variables (binary variables are temporary fixed)

> QP problem within the TR B(x*; A¥)
@ If previous step is successful
second minimization problem w.r.t. both variables
» MIQP problem within the TR B(x*; AY) x B(y*; AY)

If simulation budgst
reached - STOP

Step 0 Model updating.

with model imEmuemEHt

| sten (iap) and possisly.

Mew Simulations
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for fixed ¥
=+ x"
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If simulation budget
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(-—| Simulate F(x°, ¥, ) |

work om x
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Wwark on x and ¥
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L

Step 1.5a— MIQP
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If @ = 1, decrease TR size
if @ = 100" INCrEZEE TR Siz2

Reduce TR | [y
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Step 1.5C
validation

Re-initialize TR

Agy

Step 3 — EXPLORATION
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TRUST REGION DFO

Extended to mixed continuous and binary variables
(Conn et al, 2016)

@ A trust region B(y* Ak) is introduced for binary
variables — the local branchmg constraint

ly = "] < A¥

Hamming

which defines a nelghbourhood of size Ak around the
current TR center y* (limits number of fllps)

@ Exclusion constraints allow to mimic the pruning process
in branch & bound method to exclude explored regions
w.r.t. binary variables and thus force exploration

ly = ¥*|| > K'

(y*,K") represent the center and the radius of the region
We consider as sufficiently explored

Hamming
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I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables

@ Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed
variables

- €nergies
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I GLOBAL SURROGATE OPTIMIZATION

Remember course 1 for continuous variables :

| © 2020 IFPEN
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] SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

@ Assumption: the objective function is assumed to be a realization of a Gaussian
random process (GP) with parametric mean function and stationary covariance

function . n=>5 - Q* =0.77
—_— T l l mn ;;sa'rl
F(x) o 5 T(x) + Z(x) L X Sam::t: points
@The surrogate model is the conditional | T 95% confidence interval
expectation of the GP Lol

F(x)=E (F(x)|(xirf(xi))i=1,...,p)
=BT r(x) + kT (x)K~1(Y,, — RB)

@The variance of GP are used as error indicators
o?(x) =0% — kT (x)K k" (x)

avec R = (?}(xi))ij' K = (p(xi,xj))ij, k(x) = (p(x,xl), ...,p(x, X‘p)) l/fPE
- - (ifPaae




I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoguet, 2020)

@ Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed
variables

k((e,y), (x',y") = keone (x,x7) X kcatego .y
with

m
kcatego ,y') = 1_[ Tybyl’
[=1

with T the correlation matrix between two binary vectors, Tyz y! is the correlation between
lth

the two levels y;, y; of the [*" binary variables.

- €nergies
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I GLOBAL SURROGATE OPTIMIZATION To 12 = Tha X T

Extended to mixed continuous and categorical variables

Y2
. : / (3,2)
(Munoz Zuniga and Sinoguet, 2020) | N 12, K/z
@ Surrogate model based on Gaussian process (kriging) 1 (21
with adapted kernel for mixed variables /
1 2 3
AN Y1

k(Ce,y), (x,y") = keone (x,x7) X kcatego .y Ty

with .
kcatego ,y') = 1_[ Tyz,y{
[=1

with T the correlation matrix between two binary vectors, T

is the correlation between the two levels y;, y; of the [t"
variables.

YLy
binary
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I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoguet, 2020)

@ The maximization problem for the sampling criterion
Expected Improvement (El) is now a mixed continuous
and categorical problem

argmax(EI(x,y)) = E(I(x,y))
= E(maX(O, fmin — F(x, y)))

@El is not expensive to compute (closed-form formula)

@ Use of an appropriate optimizer NOMAD (Mesh
Adaptive Direct Search) with an adapted exploration of 1 N

the categorical space (poll step): /(1,1
@ considering the correlations learnt by the GP

@ the potentially interesting levels for minimization (levels V1
with small values of f)

- €nergies
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I APPLICATION TOATOY PROBLEM

@ A function of 2 variables : x € [0; 1] and y € {1,2, ... 10}, integer converted into 4 binaries

o —y=1 |[1,0,0,0]
3 | _y=2 [01011101
y=3 [0,0,0,1]
~_ =y=4 1[1,1,0,0]

‘ = e 1,9,
° = 7 110,10
1 g— —— e /=7 [1;0;0;1]
~— V;"« —y=g [0,1,1,0]
——u=0 [0,1,0,1]

) N N\ y=9 (0,10,

vl —_

— " 0[00,1,1)
-1

Yopt = 10
_3 | | | |
0 0.2 0.4 0.6 0.8 1

( 'f €nergies
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I APPLICATION TOATOY PROBLEM

@ A function of 2 variables : x € [0; 1] and y € {1,2, ... 10},
integer converted into 4 binaries for DFO Trust Region method for mixed binary variables

@ Comparison of TR DFO method with
@ NOMAD : mesh adaptive direct search method for mixed integer variables

@ EGO : Efficient Global Optimization based on adaptive Gaussian Process
surrogate models (Kriging) adapted to mixed categorical variables

- €nergies
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APPLICATION TOATOY PROBLEM

L
P81 BestOF ®
08
Initial Points: ol
5 randomly chosen points M
vy » 141
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&
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Solutions obtained by DFO MINLP
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X
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Solutions obtained by NOMAD (Integer)
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Nsimu to find OF -
close to OFmin
accuracy=01

=]
=]

APPLICATION TOATOY PROBLEM : SUMMARY

=4
[

o
=1

o

TR DFO method is able to

Nb of simulations

g

KA
g
o]
:
1 8
@ Ensure a convergence to local minima with a controlled accuracy g
(thanks to the TR management for continuous variables) ol ¢

@ Explore the bi iable domain thank lusi | ' - '
xplore the binary variable domain thanks to exclusion constraints DFO MINLP NOMAD INT 60
@ Reach a good compromise between simulation cost _67% 40% 94%
2
(thanks to surrogate models) and accuracy (thanks to local models) Ratio of accurate solutions

Nsimu to find OF |
close to OFmin
accuracy=0.001

@ Obtain more often the global optimum

@ But with more simulations » Compared to NOMAD |

o

pE.
. i

OMINLP  NOMAD INT EGO
56% 40% 73%

@ Less global because of our local models )
compare to global models of EGO

.
=]

[ e o
(=] e}
T
%@@@ OIED GpOdD- a8 O (+-
g

Nb of simulations

» Compared to EGO

@ But more accurate

@ Require less simulations

[ 2

. v .
Ratio of accurate solutions
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ An active research subject: phD subjects and publications

@ A very studied application: hyperparameter optimization for machine learning (type of
activation functions, number of layers, ...)

@ Challenges:
@ higher dimension (# of variables and # of levels for discrete variables)

@ Complex structures: be able to manage efficiently graph structures
e.g. the number of continuous variables depends on the value taken by a discrete variable

- €nergies
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I CHALLENGES IN DFO

@® Dealing with mixed continuous and discrete variables

@ Extension of trust region derivative free method
@ Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

@ Dealing with uncertainties
@ 1 practical example
@ See Didier Lucor’s course: introduction to optimization under uncertainty

- €nergies
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ROBUST/RELIABLE DESIGN

Uncertain variables
u

<

Controllable variables X - Simulateur

= design variables

f(x,u) Quantities of
= (x,u)

Interest

minimize/maximize
constrain

Applications in optimal design
» Reliability w.r.t. environnemental conditions (e.g. wind, wave)

» Robustness to the dispersions of the design parameters (manufacturing), to the componant
characteristics (e.g. electomagnetic characteristics of magnets), ...

=

| © 2020 IFPEN




I ROBUST/RELIABLE DESIGN

x: design variables, u: uncertain variables
f,g: performances, costs, damages

/minf(a:) — rr%Ein Hiax f(z,u) Worst case A
m ou min (E“ f(z, u)) Gain/risk compromise

S z \V, f(x,u) )

mxmf(:v) —) mﬁn Ey f(z,u) Probability of violating

s.t. g(z) <0 s.t. Pyu(g(z,u) >0) <e the constraint

| Inversion: all the designs matchin
S {a:]f(a:) = S} = {a;'\ K f(a:', u) = S} the constraint on avefage °

- €nergies
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I ROBUST/RELIABLE DESIGN

@ Difficulties
@ Simulation cost !!!

@ Approximation of statistical moments [£,, f(a}, u), \% f(a:, u), Pu(f(x, u)
@ Complex inputs/outputs : high dimension, functionnal, mixed (discrete and continuous)

@ Solutions

@ Meta-models and adaptive sampling of the simulation points dedicated to the formulations
@ Dimension reduction

@ « Goal-oriented » sensitivity analysis

» One practical example of robust optimization
» Course of Didier Lucor for more details

(‘f Energies
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I ROBUST OPTIMIZATION

Problem with one controllable variable

objectif f

parametre d'entree Ki—\;Un certaintyl on XA_>

X

( 'f €nergies
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I ROBUST OPTIMIZATION CRITERIA

Determine the values of controllable variables that minimize

@ Mean of the objective w.r.t. the uncertain variables
(# minimize the objective with uncertain variables fixed to their mean value)

@ Variance of the objective w.r.t. the uncertain variables
(minimal risk approach)

@ Worst case of the objective w.r.t. the uncertain variables

@ A quantile of the objective
(e.g. 75% of the smallest values of the objective)

- €nergies
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I ROBUST OPTIMIZATION CRITERIA

Mean Variance

E[f]
var(f)

I S

paﬁneﬁ dentree x parametre d'entree x

» Aggregated objective: mean + variance: compromise gain/risk

- Energies
Qanouvg’lss
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I ROBUST OPTIMIZATION CRITERIA

Worst case

sup(f)

I
I
I
I
I
|
I
| 1
X

parametre d’'entree

> Guaranteed value: no risk !

» Often too restricted in practice

29 | © 2020 IFPEN

quantile(f.0.75)

Quantile (75%)

parametre d'entree x

»Quantile: a controlled compromise

»But more complex too compute

- €nergies
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I ROBUST OPTIMIZATION

Robust criterion Quantity of interest
(simulator output)
@ General formulation min G (f (x,u))
X
Controllable variables Uncertain parameters

@ Robust criterion computation requires often a sampling of uncertain variables
(no closed-form expression in general)

- Monte-Carlo sampling = expensive in simulations
G(f(x,)) = Eu[f (r,w)] = Zf(x )

@ Define approximations
- meta-models / response surfaces to reduce the simulation cost and possibly even
obtain a closed-form expression of G.

| © 2020 IFPEN
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I CHALLENGES IN DFO

@® Dealing with mixed continuous and discrete variables

@ Extension of trust region derivative free method
@ Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

@ Dealing with uncertainties
@ 1 practical example
@ See Didier Lucor’s course: introduction to optimization under uncertainty

- €nergies
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DFO WITH UNCERTAINTIES

Study by A. Reyes Reyes et al.

@ Electric machines for automotive application:
study of the impact of material deterioration for optimal design

Rotor of an electric engine

@ Magnet characteristics may vary and these variations
should be taken into account during the design of the machine

@ Optimize the geometry parameters of the machine to maximize power and torque and limit
the torque ripple

» Multi-objective constrained optimization

- €nergies
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I DFO WITH UNCERTAINTIES: A CASE STUDY

@ ~10 design parameters: angles, lengths, ...

@ Objectives to be optimized
@ Maximal torque
@ Ripple of maximal torque
@ Maximal power for all rotation speeds
@ Power at a given rotation speed (14000 rpm)

@ Simulation via FEMM software
(Finite Element Method Magnetics)
~ 5-20mn per simulation points

33 | © 2020 IFPEN




I APPLIED METHODOLOGY

@ First study: deterministic optimizations with 4 configurations associated
with 4 different magnet characteristics

Methodology applied by the engineers

@ “Space filling” design of experiments (Latin Hypercube Sampling):
~150 simulated points (training points)
~80 (validation)

@ Build response surfaces of the simulator outputs with Gaussian process models
Check the prediction errors with the validation points

@ Multi-objective optimization based on these response surface

@ Validation of the optima with final simulations

- €nergies
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4 DETERMINISTIC OPTIMIZATIONS

Front de Pareto Configuration 1 Comparaison des fronts de Pareto

Comparaison des fronts de Pareto

130 . 14 53
- . §|\
S Ceo < ; ¢ ® oy
oo < o © 2 )
° ~~—" ° - X 5
< 125 * ~ = > A
; e ®  Configuration 1 T 51F
= ° x ®  Configuration 2 e ®  Configuration 1
) T 10 ®  Configuration 3 = \gurat
o S o Confiquration 4 é | ®  Configuration 2
g 1201 - . — (] onfiguration S 50 ®  Configuration 3
= ®  Front Pareto Optimisation Déterministe 1 — . .
X . , Q. ) ®  Configuration 4
© ¥ Machine de Réference =] b
= o 8 D 49t
@) Q
o -
o 115 5 =
c o > 48 -
8 ° c 6 O
» o . o)
= = ° o L
=} ] c 47 °
o 110 - ° S @® °®
* S| 4r o R 0 N\
S ° 3 46} N
O ° ® [ ] ° D:_
105 I L L 1 I 1 —.._‘ ¢ ‘.
2 1 1 1 1 1 45 1 1 1 1 Il
400 410 4200 I43(I)VI . 44°| \ 450 480 470 Yy 420 430 440 450 460 470 118 120 122 124 126 128 130
ouple Maximal (Nm) : Couple Maximal (Nm) ———> Puissance Maximale (kW) ———

» Compromise between torque and power
» Test 4 configurations with different deteriorated materials
» The maximal power is very sensitive to the material degradation (- 10 %)

( 'f €nergies
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ROBUST OPTIMIZATION

@ Introduce additional random variables in the optimization
» Robust configuration 1: a ~U(0,1) et f~U(0,6.5).
> Robust configuration 2 : PontRad1~U(2,6, 2,64), PontRad2 ~U(0,9, 0,94),PontRad 3 ~U(0,5, 0,54) et PontTang ~U(0, 5,

)

» Robust configuration 3 : « ~U(0,1), 5~U(0,6.5), PontRad1~U(2,6, 2,64),PontRad2 ~U(0,9, 0,94),PontRad 3 ~U(O0, 5,
0,54) et PontTang ~U(0,5, 0,54)

@ Robust optimization

min|Ey [f; (x, w)],/Vyfi(x, w)] |

XEX
with u the vector of uncertain variables

» Minimize the expectation of the objective with respect to the uncertain variables together with
minimizing the variance of the objective

» Same model-based methodology as deterministic optimizations

- Energies
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ROBUST OPTIMIZATION

395 Front de Pareto Loi uniforme/Configuration 3

105 Front de Pareto Loi uniforme/Configuration 3

i}

w
©
T
*
1

—_
T
1

Front de Pareto Robuste bi-objectifs
385 *  Machine de Réference configuration 3
Meilleure Machine Optimisation Mono-objectif

Front de Pareto Robuste bi-objectifs
*  Machine de Réference configuration 3
O  Meilleure Machine Optimisation Mono-objectif

0.95 4

O

3.75

09r a

Ecart type du Couple Maximal (Nm)
w w
~ ®

Ecart type de la Puissance Maximale (kW)

365 ...1.. I I I 085 .....I. 1 1 1 1
425 430 435 440 445 450 '

] ) 95 100 105 110 115 120 125
Espérance du Couple Maximal (Nm) > Espérance de la Puissance Maximale (kW) S

» Compromise between optimizing the expectation and minimizing the variance of the objective

» The robust optimization provides solutions that have better performances and that are more robust
to material degradations compared to reference solution

» Next steps on this application: EGO-type optimization (adaptive design) with multi-objectives and

constraints @E%
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I DFO WITH UNCERTAINTIES

Other formulations of optimization with uncertainties

@ RBDO (reliability based design optimization) or chance constrained optimization

min Ey [f (x, u)]
s.t. PU[ (x,u) <S]=1-¢

@ Robust inversion: find feasible solutions
I'={x €eX|Eylglx,u)] <S5}
F={xeX|Pylglx,u) <S]|=1-¢}

@ Computation of [E;; and Py is expensive in terms of simulations (Monte-Carlo simulations)
(in general, no closed-form formula)

» Use surrogate models of the simulator with respect to both variables (x, u)

( fP Energies
K ouvelles
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Thank you for your attention !
Thanks to the organizers |

basapTau

phD positions at IFPEN
https://www.ifp-school.com/en/theses

delphine.sinoquet@ifpen.fr

https://www.ifpenergiesnouvelles.fr/page/delphine-sinoquet @3555'{53
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