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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: various applications of DFO

Course 3: some challenges in DFO
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CHALLENGES IN DFO

Dealing with mixed continuous and discrete variables

Extension of trust region derivative free method

Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

Dealing with uncertainties
1 practical example

Didier Lucor’s course: introduction to optimization under uncertainty
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DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

Motivations: some optimal design problems lead to optimization problem with discrete
variables as, for instance, 

the number of componants – integer variables,

the type of materials – categorical variables, often non ordered variables,

the presence or not of some componants – binary variables.

2 main classes of applications of optimization with mixed continuous and discrete variables

with engineering models
depend typically on a limited number of variables of interest (~several dozens),

most of the variables are continuous and a few are discrete, 

require to solve complex systems of equations (e.g. PDE).

with heterogeneous models with numerous sub-systems
with a very large number of discrete variables,

for instance, number of units of a chemical process or of a network, or binray choices on/off …
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DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

𝐼𝑖 = 1,… ,𝑚𝑖 numerical representation of the discrete variable 𝑦𝑖

𝐼 = ς𝑖=1
𝑞

𝐼𝑖 the set of discrete variables

Simulator
𝑓(𝑥, 𝑦)

Optimizer
minx,y𝑓(𝑥, 𝑦)

𝑥,y

𝑓(𝑥, 𝑦)

min
𝑥∈ℝ𝑛,𝑦∈𝐼

𝑓(𝑥, 𝑦) 𝑦2

𝑦1
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SOME APPLICATIONS OF MIXED DISCRETE DFO

Optimize the well placement and opening schedule for oil/gaz production fields
Lizon et al. (2014)

Maximize a turbo-machine efficiency and minimize the vibrations by modifying the 
blades shapes for a helicopter engine
Tran et al. (2021)

Design offshore wind turbine platform, optimize wind turbine layout
on-going work (ANR project Samourai)

➢All these industrial problems involve costly to evaluate simulators solving hydro-dynamic, 
aero-dynamic, fluid flow, solid mechanics equations
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MODEL-BASED DFO METHODS

Remember 1st course on DFO

Generate an initial set of points (DoE)

Build a local or global model

Use an improvement criteria based on the model 
to propose a new point to evaluate

Improve the model (exploration)

Go toward optimum (exploitation)

Add the point to the DoE, update the model and 
iterate until simulation budget or other stopping 
criteria are reached

Simulator

Model

Simulator
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TRUST REGION DFO (LOCAL MODEL)

Initial interpolation step

Build/update a quadratic interpolation model
+ Model improvement step 

Solve QP problem in the current trust region

Add new simulations

Validation according to 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓 𝑥𝑘+𝑠𝑘

𝑓 𝑥𝑘 − 𝐹𝑘 𝑠𝑘

Update the trust region, the current TR center

Stop when the TR size is too small

YES
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Extended to mixed continuous and binary variables
(Conn et al, 2016)

Initial interpolation set in mixed space

Build a quadratic interpolation model w.r.t both 
mixed variables

Model improvement step (MIQP)

First minimization problem w.r.t. continuous 
variables (binary variables are temporary fixed)

➢QP problem within the TR ℬ(𝑥𝑘; Δx
𝑘)

If previous step is successful
second minimization problem w.r.t. both variables

➢MIQP problem within the TR ℬ(𝑥𝑘; Δx
𝑘) × ℬ(𝑦𝑘; Δy

𝑘)

TRUST REGION DFO
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TRUST REGION DFO

Extended to mixed continuous and binary variables

(Conn et al, 2016)

A trust region ℬ(𝑦𝑘; Δy
𝑘) is introduced for binary 

variables – the local branching constraint 

𝑦 − 𝑦𝑘
𝐻𝑎𝑚𝑚𝑖𝑛𝑔

≤ Δy
𝑘

which defines a neighbourhood of size Δy
𝑘 around the 

current TR center 𝑦𝑘 (limits number of flips) 

Exclusion constraints allow to mimic the pruning process 
in branch & bound method to exclude explored regions 
w.r.t. binary variables and thus force exploration 

𝑦 − 𝑦𝑘
𝐻𝑎𝑚𝑚𝑖𝑛𝑔

≥ 𝐾′

(𝑦𝑘 , 𝐾′) represent the center and the radius of the region 
we consider as sufficiently explored 
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables

Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed 
variables
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GLOBAL SURROGATE OPTIMIZATION

Remember course 1 for continuous variables :
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed 
variables

𝑘( 𝑥, 𝑦 , 𝑥′, 𝑦′ ) = 𝑘𝑐𝑜𝑛𝑡(𝑥, 𝑥
′) × 𝑘𝑐𝑎𝑡𝑒𝑔𝑜(𝑦, 𝑦

′)

with

𝑘𝑐𝑎𝑡𝑒𝑔𝑜 𝑦, 𝑦′ =ෑ

𝑙=1

𝑚

𝑇𝑦𝑙,𝑦𝑙
′

with 𝑇 the correlation matrix between two binary vectors, 𝑇𝑦𝑙,𝑦𝑙
′ is the correlation between

the two levels 𝑦𝑙 , 𝑦𝑙
′ of the 𝑙𝑡ℎ binary variables.
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

Surrogate model based on Gaussian process (kriging) 
with adapted kernel for mixed variables

𝑘( 𝑥, 𝑦 , 𝑥′, 𝑦′ ) = 𝑘𝑐𝑜𝑛𝑡(𝑥, 𝑥
′) × 𝑘𝑐𝑎𝑡𝑒𝑔𝑜(𝑦, 𝑦

′)

with

𝑘𝑐𝑎𝑡𝑒𝑔𝑜 𝑦, 𝑦′ =ෑ

𝑙=1

𝑚

𝑇𝑦𝑙,𝑦𝑙
′

with 𝑇 the correlation matrix between two binary vectors, 𝑇𝑦𝑙,𝑦𝑙
′

is the correlation between the two levels 𝑦𝑙 , 𝑦𝑙
′ of the 𝑙𝑡ℎ binary

variables.

𝑦2

𝑦1

𝑦

𝑥𝑥

𝑓
(𝑥
,𝑦
)
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

The maximization problem for the sampling criterion 
Expected Improvement (EI) is now a mixed continuous 
and categorical problem

argmax 𝐸𝐼 𝑥, 𝑦 = 𝐸 𝐼 𝑥, 𝑦
= 𝐸 max(0, 𝑓𝑚𝑖𝑛 − 𝐹(𝑥, 𝑦))

EI is not expensive to compute (closed-form formula)

Use of an appropriate optimizer NOMAD (Mesh 
Adaptive Direct Search) with an adapted exploration of 
the categorical space (poll step):

considering the correlations learnt by the GP
the potentially interesting levels for minimization (levels 
with small values of 𝑓)

𝑦2

𝑦1
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APPLICATION TO A TOY PROBLEM

A function of 2 variables : 𝑥 ∈ [0; 1] and 𝑦 ∈ 1,2,… 10 , integer converted into 4 binaries
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APPLICATION TO A TOY PROBLEM

A function of 2 variables : 𝑥 ∈ [0; 1] and 𝑦 ∈ 1,2,… 10 ,
integer converted into 4 binaries for DFO Trust Region method for mixed binary variables

Comparison of TR DFO method with

NOMAD : mesh adaptive direct search method for mixed integer variables

EGO : Efficient Global Optimization based on adaptive Gaussian Process 
surrogate models (Kriging) adapted to mixed categorical variables 
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APPLICATION TO A TOY PROBLEM

Initial Points:
5 randomly chosen points
100 repetitions
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APPLICATION TO A TOY PROBLEM : SUMMARY

TR DFO method is able to 

Ensure a convergence to local minima with a controlled accuracy
(thanks to the TR management for continuous variables)

Explore the binary variable domain thanks to exclusion constraints

Reach a good compromise between simulation cost
(thanks to surrogate models) and accuracy (thanks to local models)

Obtain more often the global optimum 

But with more simulations 

Less global because of our local models
compare to global models of EGO

But more accurate

Require less simulations

Compared to NOMAD

Compared to EGO

DFO MINLP NOMAD INT EGO
67% 40% 94%

Ratio of accurate solutions
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DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

An active research subject: phD subjects and publications

A very studied application: hyperparameter optimization for machine learning (type of 
activation functions, number of layers, …)

Challenges: 
higher dimension (# of variables and # of levels for discrete variables)

Complex structures: be able to manage efficiently graph structures
e.g. the number of continuous variables depends on the value taken by a discrete variable
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CHALLENGES IN DFO

Dealing with mixed continuous and discrete variables

Extension of trust region derivative free method

Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

Dealing with uncertainties
1 practical example

See Didier Lucor’s course: introduction to optimization under uncertainty
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Simulateur𝑥

𝑢

𝑓 𝑥, 𝑢
𝑔 𝑥, 𝑢

Uncertain variables

Quantities of 
Interest

Applications in optimal design
➢Reliability w.r.t. environnemental conditions (e.g. wind, wave)

➢Robustness to the dispersions of the design parameters (manufacturing), to the componant
characteristics (e.g. electomagnetic characteristics of magnets), … 

Controllable variables

= design variables
minimize/maximize

constrain

ROBUST/RELIABLE DESIGN 
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ROBUST/RELIABLE DESIGN 

𝑥: design variables, 𝑢: uncertain variables
𝑓, g : performances, costs, damages

Worst case

Gain/risk compromise

Probability of violating
the constraint

Inversion: all the designs matching
the constraint on average
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ROBUST/RELIABLE DESIGN 

Difficulties
Simulation cost !!!

Approximation of statistical moments

Complex inputs/outputs : high dimension, functionnal, mixed (discrete and continuous)

Solutions
Meta-models and adaptive sampling of the simulation points dedicated to the formulations 

Dimension reduction

« Goal-oriented » sensitivity analysis

➢One practical example of robust optimization

➢Course of Didier Lucor for more details
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ROBUST OPTIMIZATION

Problem with one controllable variable

Uncertainty on x
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ROBUST OPTIMIZATION CRITERIA

Determine the values of controllable variables that minimize

Mean of the objective w.r.t. the uncertain variables
(≠ minimize the objective with uncertain variables fixed to their mean value)

Variance of the objective w.r.t. the uncertain variables
(minimal risk approach)

Worst case of the objective w.r.t. the uncertain variables

A quantile of the objective
(e.g. 75% of the smallest values of the objective)
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ROBUST OPTIMIZATION CRITERIA

Mean Variance

➢ Aggregated objective: mean + variance: compromise gain/risk
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ROBUST OPTIMIZATION CRITERIA

Worst case Quantile (75%)

➢Guaranteed value: no risk !

➢Often too restricted in practice

➢Quantile: a controlled compromise

➢But more complex too compute
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ROBUST OPTIMIZATION

General formulation

Robust criterion computation requires often a sampling of uncertain variables
(no closed-form expression in general)

→Monte-Carlo sampling = expensive in simulations

𝐺 𝑓 𝑥, . = 𝐸𝑢[𝑓 𝑥, 𝑢 ] ≈
1

𝑁


𝑖=1

𝑁

𝑓(𝑥, 𝑢𝑖)

Define approximations
→meta-models / response surfaces to reduce the simulation cost and possibly even
obtain a closed-form expression of 𝐺.

min
𝑥

𝐺(𝑓 𝑥, 𝑢 )

Uncertain parametersControllable variables

Robust criterion Quantity of interest

(simulator output)
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CHALLENGES IN DFO

Dealing with mixed continuous and discrete variables

Extension of trust region derivative free method

Extension of surrogate optimization based on kriging (EGO or Bayesian Optimization)

Dealing with uncertainties
1 practical example

See Didier Lucor’s course: introduction to optimization under uncertainty
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DFO WITH UNCERTAINTIES

Study by A. Reyes Reyes et al.

Electric machines for automotive application:
study of the impact of material deterioration for optimal design

Magnet characteristics may vary and these variations 
should be taken into account during the design of the machine

Optimize the geometry parameters of the machine to maximize power and torque and limit 
the torque ripple

➢Multi-objective constrained optimization

Rotor of an electric engine

magnet
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DFO WITH UNCERTAINTIES: A CASE STUDY

~10 design parameters: angles, lengths, …

Objectives to be optimized 
Maximal torque 

Ripple of maximal torque

Maximal power for all rotation speeds

Power at a given rotation speed (14000 rpm)

Simulation via FEMM software
(Finite Element Method Magnetics)
~ 5-20mn per simulation points

Rotor of an electric engine

magnet
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APPLIED METHODOLOGY

First study: deterministic optimizations with 4 configurations associated 
with 4 different magnet characteristics

Methodology applied by the engineers

“Space filling” design of experiments (Latin Hypercube Sampling):
~150 simulated points (training points)
~80 (validation) 

Build response surfaces of the simulator outputs with Gaussian process models 
Check the prediction errors with the validation points

Multi-objective optimization based on these response surface

Validation of the optima with final simulations
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4 DETERMINISTIC OPTIMIZATIONS

➢ Compromise between torque and power
➢ Test 4 configurations with different deteriorated materials

➢ The maximal power is very sensitive to the material degradation (- 10 %)
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ROBUST OPTIMIZATION

Introduce additional random variables in the optimization
➢ Robust configuration 1 : 𝛼 ~𝒰(0,1) et 𝛽~𝒰(0,6.5).
➢ Robust configuration 2 : PontRad1~𝒰 2,6, 2,64 , PontRad2 ~𝒰 0,9 , 0,94 , PontRad 3 ~𝒰 0, 5, 0,54 et PontTang ~𝒰(0, 5,

0,54).
➢ Robust configuration 3 : 𝛼 ~𝒰 0,1 , 𝛽~𝒰(0,6.5), PontRad1~𝒰 2,6, 2,64 , PontRad2 ~𝒰 0,9 , 0,94 , PontRad 3 ~𝒰(

)
0, 5,

0,54 et PontTang ~𝒰 0, 5, 0,54

Robust optimization
min
𝑥∈𝑋

𝔼𝑈 𝑓𝑖 𝑥, 𝑢 , 𝕍𝑈[𝑓𝑖(𝑥, 𝑢)]

with 𝑢 the vector of uncertain variables

➢Minimize the expectation of the objective with respect to the uncertain variables together with 
minimizing the variance of the objective

➢Same model-based methodology as deterministic optimizations
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ROBUST OPTIMIZATION

➢ Compromise between optimizing the expectation and minimizing the variance of the objective
➢ The robust optimization provides solutions that have better performances and that are more robust

to material degradations compared to reference solution
➢ Next steps on this application: EGO-type optimization (adaptive design) with multi-objectives and 

constraints
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DFO WITH UNCERTAINTIES

Other formulations of optimization with uncertainties

RBDO (reliability based design optimization) or chance constrained optimization

min
𝑥∈X

𝔼𝑈 𝑓 𝑥, 𝑢

s.t. 𝑃𝑈 𝑔 𝑥, 𝑢 ≤ 𝑆 ≥ 1 − 𝜀

Robust inversion: find feasible solutions

Γ = {𝑥 ∈ X | 𝔼𝑈 𝑔 𝑥, 𝑢 ≤ 𝑆}

Γ = {𝑥 ∈ X | 𝑃𝑈 𝑔 𝑥, 𝑢 ≤ 𝑆 ≥ 1 − 𝜀}

Computation of 𝔼𝑈 and 𝑃𝑈 is expensive in terms of simulations (Monte-Carlo simulations)
(in general, no closed-form formula)
➢Use surrogate models of the simulator with respect to both variables (𝑥, 𝑢)
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Thank you for your attention !

Thanks to the organizers !

https://www.ifpenergiesnouvelles.fr/page/delphine-sinoquet

delphine.sinoquet@ifpen.fr

Баяртай

phD positions at IFPEN
https://www.ifp-school.com/en/theses

https://www.ifpenergiesnouvelles.fr/page/delphine-sinoquet
mailto:delphine.sinoquet@ifpen.fr
https://www.ifp-school.com/en/theses

