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DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

Course 1: main DFO methods

Course 2: variousapplications of DFO

Course 3: somechallenges in DFO
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CHALLENGES IN DFO

Dealingwith mixed continuousand discretevariables

Extension of trust regionderivativefree method

Extension of surrogateoptimizationbasedon kriging(EGO or BayesianOptimization)

Dealingwith uncertainties
1 practicalexample

Didier [ǳŎƻǊΩǎcourse: introductionto optimization under uncertainty



4 |   ©  2 0 2 0   I F P E N

DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

Motivations: someoptimal design problemslead to optimizationproblemwith discrete
variables as, for instance, 

the numberof componantsςintegervariables,

the type of materialsςcategoricalvariables, often non orderedvariables,

the presenceor not of somecomponantsςbinary variables.

2 main classes of applications of optimizationwith mixed continuousand discretevariables

with engineering models
dependtypicallyon a limited numberof variables of interest (~severaldozens),

mostof the variables are continuousand a few are discrete, 

requireto solve complexsystemsof equations(e.g. PDE).

with heterogeneousmodelswith numeroussub-systems
with a verylarge numberof discretevariables,

for instance, numberof unitsof a chemicalprocess or of a network, or binraychoicesƻƴκƻŦŦ Χ
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DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

Ὅ ρȟȣȟά numerical representationof the discretevariable ώ

Ὅ Б Ὅthe set of discretevariables
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SOME APPLICATIONS OF MIXED DISCRETE DFO

Optimize the well placement and opening schedule for oil/gaz production fields
Lizonet al. (2014)

Maximize a turbo-machine efficiency and minimize the vibrations by modifying the 
blades shapes for a helicopter engine
Tran et al. (2021)

Design offshore wind turbine platform, optimize wind turbine layout
on-going work (ANR project Samourai)

üAll these industrial problems involve costly to evaluate simulators solving hydro-dynamic, 
aero-dynamic, fluid flow, solidmechanicsequations
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MODEL-BASED DFO METHODS

Remember 1st course on DFO

Generate an initial set of points (DoE)

Build a local or global model

Use an improvement criteria based on the model 
to propose a new point to evaluate

Improve the model (exploration)

Go toward optimum (exploitation)

Add the point to the DoE, update the model and 
iterate until simulation budget or other stopping 
criteria are reached

Simulator

Model

Simulator
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TRUST REGION DFO (LOCAL MODEL)

Initial interpolation step

Build/update a quadratic interpolation model
+ Model improvement step 

Solve QP problem in the current trust region

Add new simulations

Validation according to ”

Update the trust region, the current TR center

Stop when the TR size is too small

YES
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Extended to mixed continuous and binary variables
(Conn et al, 2016)

Initial interpolation set in mixed space

Build a quadratic interpolation model w.r.t both 
mixed variables

Model improvement step (MIQP)

First minimization problem w.r.t. continuous 
variables (binary variables are temporary fixed)

üQP problem within the TR ꜞὼȠɝ

If previous step is successful
second minimization problem w.r.t. both variables

üMIQP problem within the TR ꜞὼȠɝ ꜞώȠɝ

TRUST REGION DFO
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TRUST REGION DFO

Extended to mixed continuous and binary variables

(Conn et al, 2016)

A trust region ꜞ ώȠɝ is introduced for binary 
variables ςthe local branching constraint 

ώ ώ ɝ

which defines a neighbourhoodof size ɝ around the 
current TR centerώ (limits number of flips) 

Exclusion constraints allow to mimic the pruning process 
in branch & bound method to exclude explored regions 
w.r.t. binary variables and thus force exploration 

ώ ώ ὑᴂ

ώȟὑᴂrepresent the center and the radius of the region 
we consider as sufficiently explored 
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables

Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed 
variables
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GLOBAL SURROGATE OPTIMIZATION

Remember course 1 for continuous variables :
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

Surrogate model based on Gaussian process (kriging) with adapted kernel for mixed 
variables

Ὧ ὼȟώȟὼȟώ Ὧ ὼȟὼ Ὧ ώȟώ

with

Ὧ ώȟώ Ὕ ȟ

withὝthe correlationmatrix betweentwo binaryvectors, Ὕ ȟ is the correlationbetween

the two levelsώȟώof the ὰ binaryvariables.
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

Surrogate model based on Gaussian process (kriging) 
with adapted kernel for mixed variables

Ὧ ὼȟώȟὼȟώ Ὧ ὼȟὼ Ὧ ώȟώ

with

Ὧ ώȟώ Ὕ ȟ

withὝthe correlationmatrix betweentwo binaryvectors, Ὕ ȟ

is the correlationbetweenthe two levelsώȟώof the ὰ binary
variables.
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GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga and Sinoquet, 2020)

The maximization problem for the sampling criterion 
Expected Improvement (EI) is now a mixed continuous 
and categorical problem

ÁÒÇÍÁØὉὍὼȟώ ὉὍὼȟώ
ὉÍÁØπȟὪ Ὂὼȟώ

EI is not expensive to compute (closed-form formula)

Use of an appropriate optimizer NOMAD (Mesh 
Adaptive Direct Search) with an adapted exploration of 
the categorical space (poll step):

considering the correlations learnt by the GP
the potentially interesting levels for minimization (levels 
with small values of Ὢ)

ώ

ώ
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APPLICATION TO A TOY PROBLEM

A functionof 2 variables : ὼɴ πȠρand ώᶰρȟςȟȣρπȟintegerconvertedinto 4 binaries
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APPLICATION TO A TOY PROBLEM

A functionof 2 variables : ὼɴ πȠρand ώᶰρȟςȟȣρπȟ
integerconvertedinto 4 binariesfor DFO Trust Regionmethodfor mixed binaryvariables

Comparisonof TR DFO methodwith

NOMAD : meshadaptive direct searchmethodfor mixed integervariables

EGO : Efficient Global Optimizationbasedon adaptive GaussianProcess 
surrogatemodels(Kriging) adaptedto mixed categoricalvariables 
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APPLICATION TO A TOY PROBLEM

Initial Points:
5 randomlychosenpoints
100 repetitions
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APPLICATION TO A TOY PROBLEM : SUMMARY

TR DFO methodisable to 

Ensurea convergence to local minima with a controlledaccuracy
(thanksto the TR management for continuousvariables)

Explore the binaryvariable domainthanksto exclusion constraints

Reacha good compromise betweensimulation cost
(thanksto surrogatemodels) and accuracy(thanksto localmodels)

Obtainmore often the global optimum 

But with more simulations 

Lessglobal becauseof our local models
compare to global modelsof EGO

But more accurate

Requirelesssimulations

Comparedto NOMAD

Comparedto EGO

DFO MINLP NOMAD INT EGO
67% 40% 94%

Ratio of accuratesolutions
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DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

An active researchsubject: phDsubjectsand publications

A verystudiedapplication: hyperparameteroptimizationfor machine learning(type of 
activation functions, numberof layersΣ Χύ

Challenges: 
higherdimension (# of variables and # of levelsfor discretevariables)

Complexstructures: beable to manage efficientlygraph structures
e.g.the numberof continuousvariables dependson the value takenby a discretevariable
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CHALLENGES IN DFO

Dealingwith mixed continuousand discretevariables

Extension of trust regionderivativefree method

Extension of surrogateoptimizationbasedon kriging(EGO or BayesianOptimization)

Dealingwith uncertainties
1 practicalexample

SeeDidier [ǳŎƻǊΩǎcourse: introductionto optimization under uncertainty
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Simulateurὼ

ό

Ὢὼȟό
Ὣὼȟό

Uncertainvariables

Quantitiesof 
Interest

Applications in optimal design
üReliabilityw.r.t. environnemental conditions (e.g. wind, wave)

üRobustnessto the dispersions of the design parameters(manufacturing), to the componant
characteristics(e.g. electomagneticcharacteristicsƻŦ ƳŀƎƴŜǘǎύΣ Χ 

Controllablevariables

= design variables
minimize/maximize

constrain

ROBUST/RELIABLE DESIGN 


