DERIVATIVE FREE OPTIMIZATION
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I DERIVATIVE FREE OPTIMIZATION AND APPLICATIONS

@ Course 1: main DHR@ethods

@ Course 2variousapplications of DFO

@ Course 3somechallenges in DFO
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I CHALLENGES IN DFO

@ Dealingwith mixed continuousand discretevariables

@ Extension of trustegionderivativefree method
@ Extension osurrogateoptimizationbasedon kriging(EGO oBayesiarOptimizatior)

@ Dealingwith uncertainties
@ 1 practicalexample
@ Didier[ dzO 2oNeantroductionto optimization under uncertainty
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ Motivations: someoptimal desigmproblemslead tooptimizationproblemwith discrete
variables as, for instance,

@ the numberof componants; integer variables,
@ the type ofmaterialsg categoricalvariablespften nonorderedvariables,
@ the presenceor not ofsomecomponants; binary variables.

2 main classes of applicationsaytimizationwith mixedcontinuousanddiscretevariables

@ with engineeringmodels
@ dependtypicallyon alimited numberof variables ofnterest (~severaldozens,
@ mostof the variables areontinuousand a few araliscrete
@ requireto solvecomplexsystemsof equations(e.g. PDE).

@ with heterogeneousmodelswith numeroussub-systems
@ with averylargenumberof discretevariables,
@ for instance numberof units of achemicalprocess or of a network, drinraychoice2 y k 2 ¥ ¥
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ Motivations: someoptimal desigmproblemslead tooptimizationproblemwith discrete

variables as, for instance,
@ the numberof componants; integer variables,
@ the type ofmaterialsg categoricalvariablespften nonorderedvariables,
@ the presenceor not ofsomecomponants; binary variables.

2 main classes of applicationsaytimizationwith mixedcontinuousanddiscretevariables

(@ with engineeringmodels
@ dependtypicallyon alimited numberof variables ofnterest (~severaldozens,
@ mostof the variables areontinuousand a few araliscrete

\ @ requireto solvecomplexsystemsof equations(e.g. PDE).

~

J

@ with heterogeneousmodelswith numeroussub-systems
@ with averylargenumberof discretevariables,

@ for instance numberof units of achemicalprocess or of a network, drinraychoice2 y k 2 ¥ ¥
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

T = T n W 4 , f(x’312)
| E | "Quiw G M
Ng hN
Simulator 4—“3V_ Optimizer x
QG ) | E QG0

[l S

@0 {pM hx } numericalrepresentationof the discretevariablew
@0 b "Othe set ofdiscretevariables
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I SOME APPLICATIONS OF MIXED DISCRETE DFO

@ Optimize the well placement and opening scheduoleoil/gaz productiorfields
Lizonet al. (2014)

@ Maximize a turbemachine efficiency and minimize the vibrations by modifying the
blades shapes for a helicopter engine
Tran et al. (2021)

@ Design offshore wind turbine platform, optimize wind turbine layout
on-going work (ANR proje&amoura)

U All these industrial problems involve costly to evaluate simulators solving {uyaramic,
aero-dynamic, fluid flowsolidmechanicequations
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I MODEL-BASED DFO METHODS

Remember 1t course on DFO

( )

Simulator

e,

“p

G J

@ Generate an initial set of points (DoE)
— @Build a local or global model

@ Use an improvement criteria based on the model
to propose a new point to evaluate

@ Improve the model (exploration)

@ Go toward optimum (exploitation)

— @Add the point to the DoE, update the model and
iterate until simulation budget or other stopping
criteria are reached

( )

Simulator

R . Y

. J

- €nergies
(lanouveIles
K‘_—/’

8 | © 2020 IFPEN



Step 0 - Model updating.

with model im| provemen t MEW ITERATION

If simulation budgst

reached - STOP and possibly

I TRUST REGION DFO (LOCAL MODEL) ew Sioulsions

N

If simulation budget

@ Initial interpolation step machea.s10r

— @ Build/update a quadratic interpolation model
+ Model improvement step

Compute accordzance ratio
e e
B = Mear?

@ Solve QP problem in the current trust region
@ Add new simulations

Step 2a — TR update A,
If g = 1, - decrease TR size

if g = 0 yp0q- iNCTERSE TR Si28

____@Validation according to

) )

@ Update the trust region, the current TR center

@ Stop when the TR size is too small
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TRUST REGION DFO

Extended to mixed continuous and binary variables
(Conn et al, 2016)

@ Initial interpolation set in mixed space

@ Build a quadratic interpolation model w.r.t both
mixed variables

@ Model improvement step (MIQP)

@ First minimization problemw.r.t. continuous
variables (binary variables are temporary fixed)

(0 QP problem within the TR & ¥

@ If previous step is successful
second minimization problemw.r.t. both variables

0 MIQP problem withinthe TR o e ' & e
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If simulation budgst
reached - STOP

Step 0~ Model updating
with model imEmuemEHt

step (MIGP) and possily

Mew Simulations

MEW ITERATION

If simulation budget
reached - STOP

work om x
with fied ¥

Wwark on x and ¥

Comopute accordance ratio
N s e ettt

IF new YES

na-good £
o

Step 1a-TROP
for fixed ¥
=+ x"

b

(-—| Simulate F(x°, ¥, ) |

Step 1b — Validation

B = Mrar?

L

Step 1.5a— MIQP
LT

If simulation budget
Em: sTOP Mf[x ¥ }I

ki

Step 2a — TR update A,

If @ = 1, decrease TR size
if @ = 100" INCrEZEE TR Siz2

Reduce TR | [y

Byx

Re-initialize TR

Agy

Step 3 — EXPLORATION

Add no-good cut constraint
Re-initialize TR sizes Ay p, Apx

MNEW NO-GO0D CUT
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TRUST REGION DFO

Extended to mixed continuous and binary variables
(Conn et al, 2016)

@ A trust region’ & e s introduced for binary
variablesc the local branching constraint

lo o 3

which defines aneighbourhoodof size3- around the
current TR centetd (limits number of flips)

@ Exclusion constraintallow to mimic the pruning process
In branch & bound method to exclude explored regions
w.r.t. binary variables and thus force exploration

|0 o | 0 &

w h) azepresent the center and the radius of the region
we consider as sufficiently explored
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Step 0 Model updating.

If simulation budgst
reached - STOP

with model imEmuemEHt

stp (MIGP) and possitly

Mew Simulations

MEW ITERATION

IF new YES

na-good £
o

Step 1a-TROP
for fixed ¥
=+ x"

b

If simulation budget
reached - STOP

(-—| Simulate F(x°, ¥, ) |

work om x
with fied ¥

Wwark on x and ¥

Step 1b — Validation
Comopute accordance ratio
B = Mrar?

L

Step 1.5a— MIQP

= (x%y7)

If simulation budget
reached : STOP

M

Ll

ki

Step 2a — TR update A,
If @ = 1, decrease TR size
if @ = 100" INCrEZEE TR Siz2

Reduce TR | [y

Byx

fx% 90 < farn?

Step 1.5C
validation

Re-initialize TR

Agy

S5tep 3 — EXPLORATION
Add no-good cut constraint
Re-initialize TR sizes Ay p, Apx

MNEW NO-GO0D CUT




I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables

@ Surrogate model based on Gaussian process (krigingaaahted kernel for mixed
variables
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I GLOBAL SURROGATE OPTIMIZATION
Remember course 1 for continuous variables :
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] SURROGATE OPTIMIZATION METHODS

Global models: Gaussian process (kriging)

@ Assumption: the objective function is assumed to be a realization of a Gaussian
random process (GP) with parametric mean function and stationary covariance

function . n=>5 - Q* =0.77
—_— T l l mn ;;sa'rl
F(x) o 5 T(x) + Z(x) L X Sam::t: points
@The surrogate model is the conditional | T 95% confidence interval
expectation of the GP Lol

F(x)=E (F(x)|(xirf(xi))i=1,...,p)
=BT r(x) + kT (x)K~1(Y,, — RB)

@The variance of GP are used as error indicators
o?(x) =0% — kT (x)K k" (x)

avec R = (?}(xi))ij' K = (p(xi,xj))ij, k(x) = (p(x,xl), ...,p(x, X‘p)) l/fPE
- - (ifPaae




I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga an8inoquet 2020)

@ Surrogate model based on Gaussian process (krigingpa#pted kernel for mixed
variables

A 4 A4
Y ~

Qlehhohw) T adw Q oo
with

~

Q  (dw) Y ;

with “Ythe correlationmatrix betweentwo binaryvectors "Y  isthe correlationbetween
the two levelswhw of thed binaryvariables.
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I GLOBAL SURROGATE OPTIMIZATION , To 12 = Tha X T

W
Extended to mixed continuous and categorical variak
(Munoz Zuniga an8inoquet 2020) 12, 7 2 (3,2)
@ Surrogate model based on Gaussian process (krigi ' / (21
with adapted kernel for mixed variables
1 2 3 ,
i y § y § N w
Q(ahwhwhw) Q ow Q ohw T,

with

~

Q (o) Y ;

with “Ythe correlationmatrix betweentwo binaryvectors "Y

isthe correlationbetweenthe two levelswhw of thed binary
variables.
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I GLOBAL SURROGATE OPTIMIZATION

Extended to mixed continuous and categorical variables
(Munoz Zuniga an8inoquet 2020)

@ The maximization problem for the sampling criterion
Expected Improvement (El) is nownaxed continuous

and categorical problem

AOGI(G@y)) OolCif)
o A@hQ  "Ochw )

@ EI is not expensive to compute (closedm formula) 5 (2 (3.2)

@ Use of an appropriate optimizer NOMAD (Mesh ‘
Adaptive Direct Search) with an adapted exploration of ~/\/

the categorical space (poll step): /{1}1
@ considering the correlations learnt by the GP
1 2 3

@ the potentially interesting levels for minimization (levels »
with small values oX)

S
-
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I APPLICATION TOATOY PROBLEM

@ Afunctionof 2 variables N 1ip andwN {plthB p Hhintegerconvertedinto 4 binaries

4 -
[OI 1) 1,!0]

| ‘-—
2 -‘A -
[011;0;1]
A < 0 0011
-1

[1,0,0,0]
[0,0,1,0]
[0,0,0,1]
[1,1,0,0]
[1,0,1,0]
[1,0,0,1]

SITANINNN
2~ OWoO~NOOOA~WN =

<

Yopt = 10
_3 | | | |
0 0.2 0.4 0.6 0.8 1
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I APPLICATION TOATOY PROBLEM

@ Afunctionof 2 variables ™ 1P andwn {pkt8 p #h
Integerconvertedinto 4 binariesfor DFO TrusRegionmethod for mixedbinaryvariables

@ Comparisorof TR DF@ethodwith
@ NOMAD meshadaptive direcsearchmethodfor mixedintegervariables

@ EGO : Efficient Glob@Iptimizationbasedon adaptiveGaussianProcess
surrogatemodels(Krigingladaptedto mixedcategoricalariables
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APPLICATION TOATOY PROBLEM

L
°®I' Best OF ®
08
Initial Points: i
5 randomlychosenpoints i
100repetitions o e
16 |
s} o o
2k ®
&
22
{0 -
DFO r:nmp Ltié Int EC:O

Solutions obtained by DFO MINLP

Solutions obtained by NOMAD (Integer)

2 F
3 ! -3
2 4 8 g 1 H 2 4 8 3
x x
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Nsimu to find OF -
close to OFmin
accuracy=01

APPLICATION TOATOY PROBLEM : SUMMARY

b

TR DF@Mnethodis able to

Nb of simulations

g

(thanksto the TR management faontinuousvariables)

5=

8

Q

-8

g
0k T

| o

@ Ensurea convergence to local mininvath a controlledaccuracy g
[ o

@ Explore theb|naryvarlapledomalnthgnkstq exclusionconstraints DFG MINLP NOMAD INT e
@ Reacha good compromisbetweensimulationcost _67% \40/% 94%,
(thanksto surrogatemodel9g andaccuracy(thanksto localmodelg Ratio ofaccuratesolutions

Nsimu to find OF |
close to OFmin
accuracy=0.001

@ Obtainmore often the global optimum)

@ Butwith more simulations » Comparedo NOMAD

=]
=1

’

@ Lesglobalbecauseof our localmodels]
compare to globamodelsof EGO
@ But moreaccurate » Comparedo EGO

n
=]

[ e o
(=] [=]
T T
%@ D G O apodd- a8 O (+-

.
=]

Nb of simulations

eS|

DF? MINLP NOMAD INT _ EGO
C 66% 40%

@ Requirelesssimulations

- v -
Ratio ofaccuratesolutions
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I DFO WITH MIXED CONTINUOUS AND DISCRETE VARIABLES

@ An activeresearchsubject phDsubjectsand publications

@ Averystudiedapplication:hyperparameteroptimizationfor machinelearning(type of
activationfunctions numberof layer& X 0

@ Challenges:
@ higherdimension (# of variables and #lef¥elsfor discretevariables)

@ Complexstructures:be able to managefficientlygraph structures
e.g.the numberof continuousvariablesdependson the valugakenby adiscretevariable
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I CHALLENGES IN DFO

® Dealingwith mixed continuousand discretevariables

@® Extension of trustegionderivativefree method
@ Extension osurrogateoptimizationbasedon kriging(EGO oBayesiarOptimizatior)

@ Dealingwith uncertainties
@ 1 practicalexample
@ SeeDidier[ dzO 2oNdkantroductionto optimization under uncertainty
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I ROBUST/RELIABLE DESIGN

Uncertainvariables
0

<

"@ofp) Quantitiesof

Controllablevariables \
) # .
") Interest

= design variables

=

Simulateur

minimize maximize
constrain

Applications in optimal design
U Reliabilityw.r.t. environnemental conditionse(g.wind, wave)

U Robustnes$o the dispersions of the desigrarameters(manufacturing, to thecomponant
characteristicge.g.electomagneticharacteristic ¥ Y I Iy Suaov z X

=

Input : Random Driving Cycle

ut :
B84
g e
2 8
o T T T T T T
; - - B - =
Time (s}
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