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Organization of the Optimization Under Uncertainties (OUU) class
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Numerical design “Developing something, or conceiving it, by favoring the numerical
simulation over experimental processes (e.g. because it is expensive or out-of-reach)"
Examples :

satellites, Mars exploratory robots (Sojourner (1997), Curiosity (2012), Perseverance
(2020) et Zhurong (2021) rovers...)
nuclear power plants (nuclear accident scenario and anticipation of consequences ...)
cars (design, crash resistance, fuel consumption ...)

Figure: Zhurong rover on Mars [11/06/2021]
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Numerical design “Developing something, or conceiving it, by favoring the numerical
simulation over experimental processes (e.g. because it is expensive or out-of-reach)"
Examples :

satellites, Mars exploratory robots (Sojourner (1997), Curiosity (2012), Perseverance
(2020) et Zhurong (2021) rovers...)

nuclear power plants (nuclear accident scenario and anticipation of consequences ...)

cars (design, crash resistance, fuel consumption ...)

SOLVERx s(x,z)=y

z

Assumption about the model :

1 model/solver/code is a black-box and deterministic given inputs (x, z)

2 a single evaluation of this model is COSTLY !
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Design and optimisation “Mathematical optimization : selection of a best element, with
regard to some criterion, from some set of available alternatives"

x ↔ design parameters (geometry, material, ...), can be “coupled”
z ↔ other (environmental) parameters : variables which cannot be controlled by
the designer, (e.g. the loading, turbulence intensity, etc)

Design functions :

f(x, z) ↔ cost function (cost, performance, efficiency, applicability...) which
depends on solver output, e.g. at unconstrained local optimum : ∇f = 0

gi(x, z) ↔ constraints to be satisfied (e.g. gi(x, z) = 0) or to remain
bounded (e.g. gi(x, z) ≤ 0), remark : for constrained optimization ∇f 6= 0 at
optimum

Introduction
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(computer-based) deterministic optimization
target-oriented computer-based optimization uses a numerical model mapping x to
f(x, z = z0) in order to find x? satisfying :

min
x∈χ

f(x, z = z0) (1)

such that g(x, z = z0) ≤ 0, (2)

here z = z0 corresponds to some (fixed) nominal conditions : i.e. z0 ≡ znominal, the
optimization is said to be deterministic : no uncertainties

Introduction
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toward (computer-based) optimization under uncertainty (OUU)

solving complex system design problem often faces inherent – physical stochastic
phenomena, – lack of knowledge, – modeling simplifications, – variability of final
design due to manufacturing tolerance etc.

min
x∈χ

f(x, z) (3)

such that g(x, z) ≤ 0. (4)

... therefore it happens that – highly optimized designs lead to high imperfection
sensitivities and tend to loose robustness, or – the deterministic optimum is pushed to
the boundaries of the feasible design space, which means that there is a risk of failure in
case of system imperfections/variations/noise. In this case the system is less reliable.

Important :
there can be uncertainties/noise in x or/and z

Introduction
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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

Concepts
Formalism
Some resolution methods

2 Course II : Quantification of uncertainty for more efficient optimization under
uncertainty : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Table of contents
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concept of Robustness

A system is robust if its response remains “under control" (e.g. of satisfactory
performance or bounded, etc) under non-nominal and even random conditions

Which vehicle is more robust ? which one is more efficient/performant ?... for which
objective/purpose/task/metric ?

Introduction
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Robustness vs Performance
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Which vehicle is more robust ? Is robustness always important ?
"Best" vehicle ? price, environmental footprint, durability, performance (Formule 1 / going
on vacations / car pooling...)

Introduction
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concept of Reliability

A system is reliable if it is able to perform, without failing as expected, over certain
time under specified operating conditions

“Don’t worry about burning the calories 
— that’s already been done!”

Performance : criteria defining when/how product fails
Period of time : “product life” varies a lot !
Are operating conditions always under control / fixed / stable / well known ?

Makes sense to relate reliability to a probability of occurrence of failures

Introduction
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Reliability and limit-state function
System behavior to optimize is binary in state space : its response may be separable in a
safe Ds or a failure Dg region ← there exists constraints on admissible solution

x2

x1
safe domain

failure domain

𝒟g = {x : g(x) > 0}

𝒟s = {x : g(x) ≤ 0}

Given some parameters x distribution, we face a classification problem : is the system
under failure and with what probability ?

Introduction
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To recap... 3 types of optimization under uncertainties problem

1 robust optimization : a design is robust if its performance is not (too) sensitive to
inherent variations/uncertainties [Beyer and Sendhoff, 2007]

→ uncertainties on objective functions

2 reliability-based design optimization (RBDO) : a design is reliable if its
performance targets are met in the presence of variations/uncertainties,
minimizing its risk of failure [Ditlevsen and Madsen, 1996]

→ uncertainties on constraint functions

3 ... a mix of the previous two

Different uncertain scenarios and aims give different classes of OUU

3rd July 2021 An introduction to robust optimization I 12 / 54



Optimization under uncertainties (OUU)

Is OUU only addressing a numerical problem ?

Differences in optimizing approaches to tackle scenario with or without
uncertainty

What are the different kind of problems and corresponding mathematical
formulations ?

Main difficulties and tools needed to optimize a system under uncertainties ?

Is the resolution becoming more challenging in case of large number of
parameters ?

Advantages of addressing uncertainties in a probabilistic framework ?

Examples of recent methods : harnessing metamodeling techniques

Deal with optimizations algorithms as black-boxes...

Some important points raised (or not !) in this course series
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Design & robustness : illustration on the cost function f

Let us consider a simple one-dimensional quantity of interest (QoI) represented by the
output of the function f . What would be the best optimal value T of this function ?

Best optimum (here minimum) ? x∗L ou x∗G ?

If no noise or uncertainties, then T ← x∗G is the best optimum

Illustration of the concept of robustness
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Design & robustness : illustration on the cost function f

Let us consider a simple one-dimensional quantity of interest (QoI) represented by the
output of the function f . What would be the best optimal value T of this function ?

If there exists some uncertainty related to x : for instance x has some manufacturing
tolerance, so there is some dispersion of its value due to the manufacturing process that is not
perfect

Choosing x∗G will most likely provide a large performance variation !

Illustration of the concept of robustness
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output of the function f . What would be the best optimal value T of this function ?

If there exists some uncertainty related to x : for instance x has some manufacturing
tolerance, so there is some dispersion of its value due to the manufacturing process that is not
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Design & robustness : illustration on the cost function f

Let us consider a simple one-dimensional quantity of interest (QoI) represented by the
output of the function f . What would be the best optimal value T of this function ?

f(x,z(1))

f(x,z(3))

f(x,z(2))

f(x,z(4))

If there exists some uncertainty related to some environmental parameter z that
affects the dependence btw f and x...

... choosing most robust T optimum is more difficult !

Illustration of the concept of robustness
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Design & reliability : illustration on the constraint function g
We consider a bivariate QoI depending on design parameters x. What is the impact of
the position/distribution of x on the reliable ( 6= admissible) design ?
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safe domain
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Distribution of x is bounded + far from boundary : no risk of failure for the system.

Illustration of the concept of reliability
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Distribution of x is unbounded (e.g. Gaussian) : probability of failure depends on
limit-state surface : not always explicitly known

Illustration of the concept of reliability
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Design & reliability : illustration on the constraint function g
We consider a bivariate QoI depending on parameters (x, z). What is the impact of the
position/distribution of x on the reliable ( 6= admissible) design under uncertainty ?
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Distribution of x is unbounded (e.g. Gaussian) : probability of failure depends on
limit-state surface : not always explicitly known... may depend on uncertainty !

Illustration of the concept of reliability
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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

Concepts
Formalism
Some resolution methods

2 Course II : Quantification of uncertainty for more efficient optimization under
uncertainty : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Table of contents

3rd July 2021 An introduction to robust optimization I 16 / 54



They are everywhere ! !

Uncertainties affect simulation models and their working conditions and their effect
must be accounted for when an optimization process is based on a numerical solver

Uncertainties are many and of different nature !

aleatoric/random uncertainties (environment, initial/boundary conditions,
physical phenomena, etc.)
epistemic/lack of knowledge (model, etc.)

s(x, z + δ; q + β) + ε(x) ≡ y(x,U), U = (δ,β, ε),

s : represents the numerical solver
X x : design parameters
z : environmental parameters, q : solver internal parameters, ε : outputs
uncertainty (model discrepancy)

X All uncertainties sources may be lumped into the random vector U , but in
this class U will mainly account for environmental uncertainties

Uncertainty sources (1)
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They are everywhere ! !

Uncertainties affect simulation models and their working conditions and their effect
must be accounted for when an optimization process is based on a numerical solver

Uncertainties are many and of different nature !

aleatoric/random uncertainties (environment, initial/boundary conditions,
physical phenomena, etc.)
design variables are sometimes noisy in the sense that, even if we optimize
their nominal/target values x, their true values are in fine random due to
manufacturing tolerance

s(x+ γ, z + δ; q + β) + ε(x) ≡ y(D(x),U), U ≡ (δ,β, ε),

X D(x) : noisy design parameters with known random “dispersion” (e.g.
probability distribution function), depend on hyperparameters x
x : nominal design parameters to be optimized, e.g. mean values
z : environmental parameters

X All remaining uncertainties sources may be lumped into the random vector U

Uncertainty sources (2)
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Probabilistic formulation

Standard model equipped with a probability space (Ω, A,P) :

s(D(x), z + δ) = y(D(x),U) with U ∼ fU and D|x ∼ fD|x,

where y is the solution of the numerical solver s, and the distributions are known.

Double (D(x),U) parameterization (“augmented space” or “hybrid space”, cf. [Beyer
and Sendhoff, 2007], [Pujol et al., 2009]) :

x ∈ χ ⊂ Rd : vector of (deterministic) design parameters (+ soft constraints)

U : Ω 7→ A ⊂ Rn vector of random variables of known joint distribution

Uncertainty modeling
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Generic optimization setup

x? = arg min
x∈X

f(x),

such that gi(x) ≤ 0 for i ∈ {1, . . . ,m}
xmin ≤ x ≤ xmax (5)

Deterministic optimization

3rd July 2021 An introduction to robust optimization I 20 / 54



Generic optimization setup

x? = arg min
x∈X

f(x,U), (6)

such that gi(x,U) ≤ 0 for i ∈ {1, . . . ,m} (7)
hj(x) ≤ 0, for j ∈ {m+ 1, . . . ,M} (8)

f(y(x,U)) ≡ f(x,U) : Rd × Rn → R : function to be optimized – sometimes
called cost or objective function – under various constraints :

gi(y(x,U)) ≡ gi(x,U) : Rd × Rn → R : i = 1 . . .m (hard) constraints : limit-state
functions

hj(x) ≤ 0, j = 1 . . . s (soft) constraints : fcts bounding the design space

U : Ω 7→ A ∈ Rd vector of random variables... written like that : problem is not
well-posed

⇒ y(x,U), f(x,U), gi(x,U) are dependent random quantities !

Optimization under uncertainties
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To begin we consider a simple unconstrained optimization problem

1D nonlinear function with Gaussian noises

Example : f(x; z) = y(x; z) = z1x
2 + z2x+ z3, z1 ∼ N (2, 1), z2 ∼ N (−2, 1),

z3 ∼ N (−2, 1), z ≡ (z1, z2, z3) independently distributed, x ∈ [−10, 15]

x? = arg min
x∈[−10,15]

y(x; z = z(ω))

Deterministic optimization
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Effect of uncertainties on ROBUST optimization
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1D nonlinear function with Gaussian noises

Example : f(x; z) = y(x; z) = z1x
2 + z2x+ z3, z1 ∼ N (2, 1), z2 ∼ N (−2, 1),

z3 ∼ N (−2, 1), z ≡ (z1, z2, z3) independently distributed, x ∈ [−10, 15]

x? = arg min
x∈[−10,15]

y(x; z = z(ω))

With uncertainty, few samples of y(x; z)
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To begin we consider a simple unconstrained optimization problem

1D nonlinear function with Gaussian noises

Example : f(x; z) = y(x; z) = z1x
2 + z2x+ z3, z1 ∼ N (2, 1), z2 ∼ N (−2, 1),

z3 ∼ N (−2, 1), z ≡ (z1, z2, z3) independently distributed, x ∈ [−10, 15]

x? = arg min
x∈[−10,15]

y(x; z = z(ω))

No unique optimum
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To begin we consider a simple unconstrained optimization problem
1D nonlinear function with Gaussian noises
Example : f(x; z) = y(x; z) = z1x

2 + z2x+ z3, z1 ∼ N (2, 1), z2 ∼ N (−2, 1),
z3 ∼ N (−2, 1), z ≡ (z1, z2, z3) independently distributed, x ∈ [−10, 15]

x? = arg min
x∈[−10,15]

y(x; z = z(ω))

(a) x? histogram : the optimum follows
a random distribution (not normal !) due
to z noise

(b) Variability of y given x? (horizontal axis)

Effect of uncertainties on ROBUST optimization
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How do we rank the various optimum?

⇒ How to choose among x?1, x?2 et x?3 ?
⇒ what is the meaning of “x?i is better than x?j” ?

Effect of uncertainties on ROBUST optimization
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Idea : “remove” the uncertainty (mathematically) with statistical (risk) measures
this way the function does not explicitly depends on the uncertainty anymore
(marginalized, implicit dependance through fz)

x? = arg min
x∈X

L
(
y(x, z)

)
,

where z is the random quantity.

What choices of the measure L can we choose to express that “x? is better (in some
sense) than x′?” ?

Making use of statistical measures
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Different statistical (risk) measures for the objective function

"worst-case" approach : maxz[y(x; z)] ≤ maxz[y(x′; z)].

mean approach : E[y(x; z)] ≤ E[y(x′; z)], with E[y(·; z)] =
∫
A y(·, z)fZ(z)dz

variance approach : V[y(x; z)] ≤ V[y(x′; z)], with V[y(·; z)] = E[(y(·; z)− E[y(·; z)])2]

quantile approach : Qα[y(x; z)] ≤ Qα[y(x′; z)], P(y(x; z) ≤ Qα[y(x; z)]) = α, with
Qα[y(·; z)]) = inf{q ∈ R : P [y(·; z) ≤ q] ≥ α}

conditional value-at-risk approach :
E[y(x; z) | y(x; z) ≥ Qα[y(x; z)]] ≤ E[y(x′; z) | y(x′; z) ≥ Qα[y(x′; z)]]

a multi-objective criteria approach (E[y(x; z)],V[y(x; z)])

... 108( !) different statistical measures in [Göhler et al., Journal of Mechanical
Design, 2016], see also [Yao et al. 2011 ; Lelievre et al. 2016]

Making use of statistical measures
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The choice of the measure completely changes the ordering of the design !

(c) Mean : x3 > x2 > x1 (d) Quantile 95% : x1 > x2 > x3

Impact of statistical measures choice
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The optimum varies depending on the level of uncertainty

Example 1 : y(x; z) = y(x) + z(x), chosen L ↔ Qα, type of uncertainty z ↔ model error

x? = arg min
x∈[−20,20]

Qα [y(x; z)] ,
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Impact of uncertainty level
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The optimum varies depending on the level of uncertainty

Example 2 : y(x, z) = y(x+ z), chosen L↔ E, z ↔ manufacturing tolerance

x? = arg min
x∈[−20,20]

E [y(x+ z)] , z ∼ N (0, σ2)
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The optimum varies a lot depending on the measure

Example 3 : y(x, z) = y(x+ z), chosen L↔ ???, z ↔ manufacturing tolerance

x? = arg min
x∈[−20,20]

L [y(x+ z)] , z ∼ U(−0.1, 0.1)
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Impact of statistical measures choice
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The optimum varies a lot depending on the measure
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The optimum varies a lot depending on the measure
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The optimum varies a lot depending on the measure

Example 3 : y(x, z) = y(x+ z), chosen L↔ ???, z ↔ manufacturing tolerance

x? = arg min
x∈[−20,20]

L [y(x+ z)] , z ∼ U(−0.1, 0.1)

0 0.2 0.4 0.6 0.8 1
x

2

2.5

3

3.5

y

  80% quantile            

Impact of statistical measures choice

3rd July 2021 An introduction to robust optimization I 29 / 54



The optimum varies a lot depending on the measure
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This time we start from a constrained deterministic optimization problem and

the OUU formulation becomes :

x? = arg min
x∈X

L [f(x,U)] ,

such that Ki [gi(x,U)] ≤ 0 for i ∈ {1, . . . ,m} (9)
xmin ≤ x ≤ xmax

Again, statistical measures must be introduced in K, to deal with the constraints this
time.

What about more generic OUU problem formulation
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Design & reliability : illustration on the constraint function
We consider a bivariate QoI depending on parameters (x,U). What is the impact of the
position/distribution of x on the reliable ( 6= admissible) design under uncertainty ?

x2

x1
safe domain

failure domain

+

+
+

+

+
+

+
+

+

+

+
+

+
+

+ +

+

+ +

Distribution of x is unbounded (e.g. Gaussian) : probability of failure depends on
limit-state surface : not always explicitly known... may depend on uncertainty !

Getting back to the concept of reliability
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RBDO problems formulation (1)

x? = arg min
x∈X

f(x,U)

such that Ki
[
gi(D(x),U)

]
≤ 0 for i ∈ {1, . . . ,m}

xmin ≤ x ≤ xmax

with

K
[
gi(D(x),U)

]
≡ P

[
gi(D(x),U) > 0

]
− Pf , (10)

=
∫
gi(D(x),U)>0

fD|x(D|x)dD|x− Pf

=
∫

Rd

1
gi(D(x),U)>0fD|x(D|x)dD|x− Pf ,

so as to denote it will respect a given tolerance on a probability of failure (PoF) Pf .

Making use of statistical measures
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RBDO problems formulation (2)

x? = arg min
x∈X

f(x,U)

such that Ki [gi(x,U)] ≤ 0 for i ∈ {1, . . . ,m}
xmin ≤ x ≤ xmax

with

K [gi(x,U)] ≡ P [gi(x,U) > 0]− Pf , (11)

=
∫
gi(x,U)>0

fU (U)dU − Pf =
∫

Rn

1gi(x,U)>0fU (U)dU − Pf ,

so as to denote it will respect a given tolerance on a probability of failure (PoF) Pf .

Remark : reliability problem was already involving probabilities... additional uncertainties
make the formulation → not as straightforward as in the robust case !
Solution of RBDO problem relies on estimation of PoF for different values of design
parameters → cost++

Making use of statistical measures
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Equivalence between RBDO and quantile-based formulation
Standard reliable formulation via PoF defined for particular constraint gi :

K [gi(x,U)] ≡ P [gi(x,U) > 0] ≤ P gi
f ↔ Pf (� 1)

for a given design : P gi
f (x) = P [gi(U |x) > 0] =

∫
gi(U|x)>0

fU|X(U |x)dU

Equivalence between RBDO and quantile-based formulation

P [gi(x,U) > 0] ≤ Pf ⇐⇒ Qα [x; gi(x,U)] ≤ 0 (put otherwise)

quantile approach : easier coupling with already existing deterministic design process
outer loop explores the design space while inner loop simply computes constraints
quantiles

Relying on computation of probability or quantile ?
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2D nonlinear objective function under constraints [Himmelblau 1972, Balesdent et al.
2020] and subject to Gaussian noise

min (x2
1 + x2 − 15− 0.5U2)2 + (x1 + x2

2 − 11 + U)2 + 10(5− x1) + 10(5− x2),

such that :
(

(x1 + 5− 0.1(U − 2.5)2
)2

+ (x2 + 6− 2U)2 − 100) ≤ 0,

with U ∼ N (2, 1.5) and x ∈ [−5, 5]

x1

x2 x2

x1 x1

x2

 objective function f( ⋅ )  constraint g( ⋅ )  Det. obj. fct + limite
state g(x) = 0

More generic OUU problem example
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2D nonlinear objective function under constraints [Himmelblau 1972, Balesdent et al.
2020] and subject to Gaussian noise
Different measures of uncertainty applied to the objective function.

E.g. a robust measure with a
multi-objective optimization → as a
single-objective one [Papadrakakis
2005] :

L ≡ E [f(x,U)] + kV [f(x,U)]1/2 ,

the larger k > 0, the more
conservative the design.

x1

x2

x1

x2

mean std

  robust   quantile (99%)

𝔼 [f(x, U)] 𝕍 [f(x, U)]1/2

𝔼 [f(x, U)] + 3𝕍 [f(x, U)]1/2 ℚ99% [f(x, U)]
x1

x2

x1

x2

More generic OUU problem example
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2D nonlinear objective function under constraints [Himmelblau 1972, Balesdent et al.
2020] and subject to Gaussian noise
Different measures of uncertainty applied to the constraint function (and corresponding
limit state).

similar compound robust measure
can also be applied on the
constraint gi(·) :

K ≡ E [gi(x,U)]+kiV [gi(x,U)]1/2 ,

the magnitude of ki > 0 is more
difficult to interpret depending on the
localization of the high variance region.

Or we may rely on the reliability
measure : P [g(x,U) > 0] ≤ Pf

x1

x2

x1

x2

x1

x2

x1

x2

�𝔼 [g(x, U)] �𝕍 [g(x, U)]1/2

�𝔼 [g(x, U)] + 3𝕍 [g(x, U)]1/2 �ℙ [g(x, U) ≤ 0] ≤ 0.01

More generic OUU problem example
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To recap...
1 Depending on the different measures of uncertainty the designer has to choose

most representative uncertainty measures (L,K) for his design under
uncertainties problem.
The choice of a given uncertainty measure for the objective function and constraints
leads to a particular formulation of the design problem.
This could be (roughly) : 1. a ROBUST, 2. a reliability-based RBDO or 3. a
robust & reliability-based formulation

Figure: [Lelievre et al. 2016]

OUU roadmap

3rd July 2021 An introduction to robust optimization I 36 / 54



To recap...
1 Depending on the different measures of uncertainty the designer has to choose

most representative uncertainty measures (L,K) for his design under
uncertainties problem.
The choice of a given uncertainty measure for the objective function and constraints
leads to a particular formulation of the design problem.
This could be (roughly) : 1. a ROBUST, 2. a reliability-based RBDO or 3. a
robust & reliability-based formulation

Figure: [Lelievre et al. 2016]

OUU roadmap

3rd July 2021 An introduction to robust optimization I 36 / 54



To recap...

1 Depending on the different measures of uncertainty the designer has to choose
most representative uncertainty measures (L,K) for his design under
uncertainties problem.
The choice of a given uncertainty measure for the objective function and constraints
leads to a particular formulation of the design problem.

This could be (roughly) : 1. a ROBUST, 2. a reliability-based RBDO or 3. a
robust & reliability-based formulation

2 Once he holds the right formulation with respect to the system specifications and
optimization goal then he has to select :

1. the right algorithm to efficiently evaluate the statistical measures (L,K) and 2.
the right optimization algorithm to use in conjunction with the one of 1.

OUU roadmap
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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

Concepts
Formalism
Some resolution methods

2 Course II : Quantification of uncertainty for more efficient optimization under
uncertainty : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Table of contents
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In the context of expensive deterministic solver for a ROBUST optimization

x? = arg min
x∈X

L(f(x;U)),

searching for x and estimating the risk measure : double loop

L? = +∞, n = 1
While n ≤ N, (loop 1 : optimization loop)
→ propose new x ∈ X ,
→ “evaluate” L(f(x,U)) by repeating solver calls (loop 2 : risk estimation loop)

if L(f(x,U)) ≤ L?, x? = x, L? = L(f(x,U)) e.g. Monte-Carlo with m samples

end if
end While

High (multiplicative) cost : O(n×m). very time consuming !

The “double loop” issue
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safe domain

failure domain

!g = {x : g(x) > 0}

x2

x1

Focus on RBDO problems resolution
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Numerical approaches for failure probability estimations

Computational cost very high due to estimation of failure probability (small numbers ∝
tail of distribution) : need for acceleration of one of the 2 loops or both.

Existing useful approaches :
Simulation methods : Monte-Carlo simulation (MCS) (robust but slow),
numerical integration, importance sampling, subset simulation, stratified sampling

Approximation methods :
First-Order Reliability method (FORM) [Ditlevsen & Madsen, 1996] it is based
on the combination of an iterative gradient-based search of the so-called
design point and a local linear approximation of the limit-state function in
a suitably transformed probabilistic space
Second-Order Reliability method (SORM) it is a second-order refinement of
FORM, the computational costs associated to this refinement increase rapidly
with the number of input random variables

Metamodel approaches (next courses)

Focus on RBDO problems resolution
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Quick recall on Monte-Carlo approach for uncertainty propagation

relies on a sample of iid random variables. Vector X is randomly and independently
sampled according to its pdf fX : (X)i=1,...,N = (X(i)

1 , . . . , X
(i)
n )

corresponding realizations are computed from the model g :
(g(X))i=1,...,N = (g(X(i)

1 ), . . . , g(X(i)
n )) : vector of realizations of a random

variable of unknown distribution

goal : estimate some following quantity, where fX is the pdf of x :

I = E[ψ(g(X))] =
∫
A
ψ(g(x))fX(x)dx,

thanks to the MC estimator of I :

I ≈ În = 1
N

N∑
i=1

ψ(g(X(i))),

with the function ψ defining the desired QoI (mean, variance, probability of failure,
etc.).

Focus on RBDO problems resolution
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“Hit or miss” crude Monte-Carlo estimator of PoF

we wish to estimate :

P ≡ P [g(X) > 0] =
∫

Rn

1g(X)>0fX(x)dx,

with an MC estimator of P : P̂N = 1
N

∑N

i=1 1g(X(i))>0.

Properties of this estimator :
– no biais
– almost sure convergence P̂N

N→∞−−−−→ P a.s.
– variance : V(P̂N ) = P (1− P )/N estimated by : σ̂2

P̂N
= P̂N (1− P̂N )/N

– Central Limit theorem (CLT) allows to build confidence intervals around the
prediction

Focus on RBDO problems resolution
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Precision of the MC estimator

coefficient of variation (error dispersion) : δ =
√

V(P̂N )/E(P̂N ) =
√

(1− P )/nP is a
nice criteria to monitor the convergence

For small values of P , the number of simulations required to reach precision δ is :
Nδ ' 1

Pδ2 .

Quick example : estimating the number π with a MC
method drawing uniformly distributed points over a
quarter of a disk centered at the origin and of radius
unity.

come up with an estimation of the sample size
necessary to achieve a given accuracy η with a certain
level of confidence α

Focus on RBDO problems resolution
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Numerical approaches for failure probability estimations

Computational cost very high due to estimation of failure probability (small numbers ∝
tail of distribution) : need for acceleration of one of the 2 loops or both.

Existing useful approaches :

Simulation methods : Monte-Carlo simulation (MCS) (robust but slow),
numerical integration, importance sampling, subset simulation, stratified sampling

Approximation methods :
First-Order Reliability method (FORM) [Ditlevsen & Madsen, 1996] it is based
on the combination of an iterative gradient-based search of the so-called
design point and a local linear approximation of the limit-state function in
a suitably transformed probabilistic space
Second-Order Reliability method (SORM) [Breitung, 1989] it is a second-order
refinement of FORM, the computational costs associated to this refinement
increase rapidly with the number of input random variables

Metamodel approaches (next courses)

Focus on RBDO problems resolution
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Originally FORM is an approximation method for failure probability estimations

safe domain

failure domain

!g = {x : g(x) > 0}

x2

x1

v2

v1
safe domain

failure domain

!g = {x : g(x) > 0}

Figure: Physical space (left) and normalized space (right)

Focus on RBDO problems resolution
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Originally FORM is an approximation method for failure probability estimations

safe domain

failure domain

!g = {x : g(x) > 0}

x2

x1

v2

v1
safe domain

failure domain

!g = {x : g(x) > 0}
v⋆ ≡ MPP

β
α

Figure: Physical space (left) and standard normalized space (right)

Focus on RBDO problems resolution
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FORM approximation method for failure probability estimations

aims at the approximation of the integral involved in the failure probability, for a given
design : Pfi ≡ P

[
gi(x,U) > 0

]
4 main steps :

1 isoprobabilistic transform of the input random vector into a standard normal
vector v ∼ fV ≡ N (0, 1)

2 A search for the most probable point of failure (MPP), closest to the origin in
this new standard normal space

3 An approximation of the limit-state surface at the MPP

4 Computation of the PoF from this approximated surface

Focus on RBDO problems resolution
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FORM approximation method for failure probability estimations
aims at the approximation of the integral involved in the failure probability, for a given
design : Pfi ≡ P [gi(x, ·) > 0]

1 isoprobabilistic transform e.g. Rosenblatt (ie. joint probability f· is known) or Nataf
(marginals fUi

and correlation are known) [Lemaire et al., 2005] such that
gi(x, ·) = gi(τ−1(·, v), ·) = gvi (v, ·) of the input random vector x ∼ fX(x) into a
standard normal vector v ∼ fV ≡ N (0,1). PoF takes a simpler form :∫

gi(x,·)>0
fX(x)dx =

∫
v∈Rn: gv

i
(v,·)>0

fV (v)dv

Focus on RBDO problems resolution
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FORM approximation method for failure probability estimations
aims at the approximation of the integral involved in the failure probability, for a given
design : Pfi ≡ P [gi(x, ·) > 0]

2 A search for the most probable point of failure (MPP) in the standard normal
space (SNS), known as the design point v? = arg minv{‖v‖, gvi (v) = 0} (nonlinear
optimization problem under equality constraint) and ‖v?‖ ≡ β [Hasofer-Lind reliability
index, 1974].
The MPP is the point of the limit-state the closest to the origin (new pdf is
spherically symmetric). Calling gvi is costly (nbr of calls must remain reasonable)

3 (once previous problem solved : next slide) a
linearization (hypertangent plane) of the
limit-state surface at v? provides an
approximation of the limit-state surface and is
provided by a first-order Taylor expansion :

gvi (v) ≈ ∇gvi (v)T |v=v? (v − v?),
so that reliability index β = α? · v?, where α is the
unit normal vector to the tangent plane at the
design point.

v2

v1
safe domain

failure domain

!g = {x : g(x) > 0}
v⋆ ≡ MPP

β
α

Focus on RBDO problems resolution
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FORM approximation method for failure probability estimations
aims at the approximation of the integral involved in the failure probability, for a given
design : Pfi ≡ P [gi(x, ·) > 0]

3 a linearization of the limit-state surface at v? provides an approximation of the
limit-state surface :

gvi (v) ≈ ∇T gvi (v)|v=v? (v − v?),
with normalized version :

ĝvi (v) = ∇T gvi (v?)
‖∇T gvi (v?)‖ (v − v?) = β − αT · v,

so that reliability index β = αT · v?, where α is the unit normal vector to the tangent
plane at the design point.

4 analytical computation of the resulting approximation of
Pfi ≈ P(ĝvi (v) > 0) = P(β − αT · v > 0) = 1− P(β ≤ αT · v). Because is a
standard normal RV Pfi ≈ 1− Φ (−βi), Φ : is the standard normal CDF.
Once βi is obtained, the estimation of the PoF is direct (exact when limit-state is
linear).

Focus on RBDO problems resolution
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Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithm

The rationale behind the HL-RF algorithm is to iteratively solve a linearized problem
around the current point. Normally, the algorithm is started with v0 = 0

quadratic functional under nonlinear equality constraints ⇒ Lagragian multiplier
approach : L(v, λ) = 1

2‖v‖
2 + λ gvi (v), which gives :

1. ∇vL(v?, λ?) = 0 and 2. ∂L
∂λ

(v?, λ?) = 0, becoming :
1. gvi (v?) = 0 and 2. v? + λ∇gvi ((v?) = 0.

At each iteration, limit-state approximation :
gvi (v) ≈ gvi (vk) +∇gvi|vk

· (v − vk), so the two equations become :

1. ∇gvi|vk
· (vk+1 − vk)) + gvi (vk) = 0, and 2. vk+1 = λ∇gvi|vk

, ultimately giving :

vk+1 =
(
αk · vk + gv

i (vk)
∇gv

i|vk

)
αk = βkαk, and . . . at convergence :

β = α? · v?, when gvi (vk = v?) ≈ 0.

Focus on RBDO problems resolution
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Advantages and disadvantages of approximation methods for PoF estimation

(+) easy to implement (for reliability study alone)

(+) inexpensive in terms of number of simulations.
The integration problem is replaced by a minimization problem, often requiring
much less evaluations.

(-) no real guarantee on the result, an no error bars for the probability of failure

(-) require intermediate steps which may be hard to integrate in a
general-purpose optimization algorithm

Focus on RBDO problems resolution
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We went briefly over techniques handling the “uncertainty part” (inner loop) but it
obviously has to be linked to the “optimization part” (outer loop).

For solving a full RBDO problem different approaches are classified into three groups, –
two-level, – mono-level [Liang et al., 2004] and – decoupled [Du and Chen, 2004]
approaches [Chateauneuf and Aoues, 2008]

The two-level approaches either rely on :
simulations to sample the joint distribution of the random variables at play
(MCS, Importance Sampling, Subset simulation, etc) or

X approximation methods such as FORM & SORM with notably :
– Reliability Index Approach (RIA with a FORM analysis) [Rackwitz and

Fiessler, 1978]

– Performance Measure Approach (PMA with an inverse FORM
analysis) [Youn et al. 2005, Cho and Lee 2011]

– Quantile Estimate Approach [Moustapha et al. 2016]

Those techniques can be coupled to general-purpose global optimization
algorithms, such as SQP, GA, constrained (1+1)-CMA-ES, (eventually with hybrid
formulation involving additional gradient-based minimization)

Focus on RBDO problems resolution
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Two-level RBDO solvers relying on two different FORM algorithms

essentially

for a given design x,
Reliability Index Approach (RIA) :

v?RIAi
= arg min

v∈V
‖v‖ − βi, (12)

such that gvi (x, v) = 0 (13)

Performance Measure Approach (PMA) :

v?PMAi
= arg min

v∈V
gvi (x, v), (14)

such that ‖v‖ = βtarget
i (15)
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Integrating uncertainties into the design process greatly modifies the optimization
problem to be solved.

The statistical measures of risk must be carefully adapted to the problem.

As a first approach, the solution of a ROBUST or RBDO problem requires the
duplication of calculations, and involves a HIGH numerical cost ⇒ need for
accelerating strategies to lower number of calls to the model...

... toward surrogate modeling approaches :

addressing both design and parameters uncertainty ?
adaptive learning ?
best harnessing of measure of metamodeling errors ?

Short conclusion about Course I

3rd July 2021 An introduction to robust optimization I 54 / 54


	Course I: Concepts, formalism and some classes of resolution methods for simple optimization under uncertainty (1.5h, Thursday)
	Concepts
	Formalism
	Some resolution methods

	Course II: Quantification of uncertainty for more efficient optimization under uncertainty: metamodeling with Gaussian Processes (1.5h, Friday)
	Course III: Metamodeling-based Reliability-Based Design Optimization (1.5h, Saturday)

