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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

Surrogate modeling
Gaussian vectors and gaussian processes
Regression via conditioned gaussian processes
Challenge of dimensionality and space-filling designs

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Organization of the class
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What is a surrogate model ?

Physical system Numerical solver

Input parameters �x ∈ ℝd

Surrogate model

Observed experiment

�yobs(x)

Simulated experiment

�y = g(x)

Predicted experiment

� ̂y = ̂g(x)

Regression framework with x : input parameters and y is the QoI
Surrogate model (SM) ≡ response surface, metamodel, simplified model,
emulator, . . . ; surrogate modeling, e.g. ≡ linear regression (supervized learning)
a surrogate model is an approximation of our reference model at hand : trading
accuracy for speed
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Why do we need a a surrogate model ?

Uncertainty quantifications such as uncertainty propagation, sensitivity analysis
(SA), OUU, . . . need more than a few samples around the nominal solution

These analyses require numerous n evaluations (i.e. runs/calls) of the
deterministic solver to be useful/accurate

they may require n ∼ O(10) to determine the response central moments,
n ∼ O(103 − 104) for sensitivity analysis and n ∼ O(105) for the correct
estimation of rare events ∝ reliability problems

Introduction
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Why do we need a a surrogate model ?

We call s a function, associating to each x ∈ X ⊂ Rd a scalar deterministic value
y = s(x) ∈ R ; s represents our black-box model/solver/code/experiment. Note
that x is not random for now. We wish to characterize the entire image of the
function :

Ss = {(x, y) ∈ X × R | y = s(x)} .

Assumptions :
The number of calls to s is limited (e.g. long simulations, slow computers,
expensive experimentations)

We can hold exact s(x(i)) or noisy s(x(i)) + ε(i) model observations

Goal :
maximize the knowledge of the entire system response Ss (continuous representation) from
as little number of observations as possible (discrete representation).

Introduction
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main steps of surrogate modeling

1. Design of Experiments
(DoE)
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we choose a sample of n
points

{
x(i), 1 ≤ i ≤ n

}
in X .

2. Simulation
we evaluate n times the
model s.

3. Metamodeling

x

y

titre
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10
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30

40

we approximate the
response surface “in
between” the calculated
points obtained from the
simulations.

Important : we want our approximation of s, called ŝ, to be capable of predicting
well the response for new parametric value x∗ ∈ X (no information available !) :

ŷ = ŝ(x∗) ≈ y∗ = s(x∗)

We are in the small data range : i.e. data are expensive/few (n/d is small).
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different types of metamodeling techniques

(generalized) Linear models (GLM)

Splines, Radial Basis Functions (RBF)

Additives models

Regression trees (CART)

Support Vector Machines (SVM)

(Deep) Neural Networks (DNN)

Kriging or Gaussian Process (GP) models

Polynomial Chaos expansion (PCE)
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Splines, Radial Basis Functions (RBF)

Additives models

Regression trees (CART)

Support Vector Machines (SVM)

(Deep) Neural Networks (DNN)

Kriging or Gaussian Process (GP) models [Krige 1951, Matheron 1963, Santner et
al., 2003, Rasmussen & Williams 2006]
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why GP ?

Gaussian distribution is reasonable for modeling a large variety of random
variables

GP are simple to define and simulate

GP are used in various fields such as computer experiments, machine learning,
bayesian optimization,...

They are fully characterized by their mean and covariance functions

As we will see, Gaussian properties simplify the resolution of problems, and they
have been the most studied theoretically

Kriging metamodeling :
use stochastic method (based on GP) to approximate deterministic function !
→ provides a stochastic error bound

Introduction
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Gaussian distribution

The gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives (maximizes entropy of a single real variable,
CLT) and has many important analytical properties.

a Gaussian random variable Z on R with mean µZ and variance σ2
Z > 0 has the

following distribution :

fZ∼N (µZ ,σ
2
Z

) = 1√
2πσZ

exp
(
− 1

2σ2
Z

(Z − µZ)2
)

10/3/09 4:56 PMhttp://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg
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Gaussian vectors and gaussian processes
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Gaussian distribution and gaussian vector

A random vector (RV) Z = (Z1, . . . , Zn)T is said gaussian iif its joint PDF fZ

writes :

fZ(z) = 1√
(2π)ddetΣZ

exp
{
−1

2(z − µZ)TΣ−1
Z (z − µZ)

}
,

µZ = E(Z) = (E(Z1), . . . ,E(Zn))T its mean vector

ΣZ ≡ CZ = E
(
(Z − E [Z])T (Z − E [Z])

)
its covariance matrix

ΣZ =

 σ2
1 cov(Z1, Z2) . . . cov(Z1, Zn)

cov(Z2, Z1) σ2
2 . . . cov(Z2, Zn)

...
...

. . .
...

cov(Zn, Z1) cov(Zn, Z2) . . . σ2
n


avec cov(Zi, Zj) = cov(Zj , Zi) = E ((Zi − E(Zi))(Zj − E(Zj))) et σ2

i = var(Zi).
Z gaussian RV : fully characterized by its mean and covariance (assumed always
invertible)

→ identifying these 2 quantities is enough !

Gaussian vectors and gaussian processes
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Visual 2D representations

cov(Z1, Z2) = 0 cov(Z1, Z2) = 0.5 cov(Z1, Z2) = 0.9

Gaussian vectors and gaussian processes
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Definition

Z : n-dimensional (multivariate) RV is a gaussian RV, noted in the following GRV,
if any linear combination of its components follows a gaussian distribution :

∀a ∈ Rn aTZ =
d∑
i=1

aiZi ∼ N (·, ·)

Properties

a GRV ⇒ has Gaussian components (be careful, the reciprocal is not true)

If a RV components are Gaussian + independent ⇒ vector is a GRV

The sum of two independent Gaussian vectors is a Gaussian vector

GRV components are independent iff they are uncorrelated (not true for other
PDF types !)

Gaussian vectors and gaussian processes
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Properties

stability under linear transformation
if Z is a GRV of d-dimension, of mean µZ and covariance CZ , then for any matrix
M of size (m, d) and any RV : y of size m, X = MZ + y is also a GRV, with :

E(X) = MµZ + y, CX = MCZM
T .

generation of iid realizations from GRV
to generate random independent realizations of any GRV from a standard normal
random number generator, we use the following :

Z and (µZ +Rξ) follow same joint distribution
Z is a GRV, of mean µZ and covariance CZ ,
ξ ∼ N (0, 1),
R is a symmetric matrix such that RTR = CZ ,

Gaussian vectors and gaussian processes

Didier Lucor (CIMPA 2021) An introduction to robust optimization II 13 / 51



Conditioning properties

Gaussian conditioning theorem Let Z and X be two GRV of size n and m,
respectively, with their joint pdf noted(

Z
X

)
∼ Nn+m

((
µZ

µX

)
,

(
CZ CZX

CXZ CX

))
with µZ et µX the mean vectors of size n and m, respectively, the covariance
matrix CZ of size n× n, CZX of size n×m, CZX = CTZX and CX of size m×m.

then conditionally on X, Z is again a GRV with following moments :

(Z | X = x) ∼ N (µCond(x), [CCond(x)]),{
µCond(x) = E(Z | X = x) = µZ + CXZC

−1
X (x− µX) ,

CCond(x) = CZ − CXZC
−1
X CTXZ .

Exercise : we assume X ∼ N (0, 1), Z ∼ N (0, 1) and are correlated :
E [XZ] = ρ ≤ 1. Quantify the influence of an observation X = x on fZ ?

Gaussian vectors and gaussian processes
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Illustration for different levels of correlation ρ

X ∼ N (0, 1), Z ∼ N (0, 1), −1 ≤ E [XZ] = ρ ≤ 1
⇒ (Z | X = x) ∼ N (ρx, 1− ρ2).

We condition Y thanks to the knowledge of X, e.g. X = −1

Observation :
Conditioning changes the mean and reduces the variance !

Gaussian vectors and gaussian processes
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Stochastic Processes (SP)

Natural phenomena (wind speed, ground acceleration, wave height, etc) : good SP examples.
They are not predictable, i.e. : their observation never provides the same signal. 2
interpretations :

a SP on X : a functional Z : X → R / Z(x) is a random variable for each x ∈ X .

alternatively a SP is a function on X that is random

Probability space (ΩZ , AZ , PZ) indexed on X
– SP ≡ parametrized infinite series of random
variables :

{Z(x)}x∈X with Z(x) : ω 7→ Z(ω,x)

Warning ! notation sometimes very much simplified
⇒ Z(x)
– The probability space ΩZ is the same for all
Z(ω,x) with x ∈ X ∈ Rd

Gaussian vectors and gaussian processes
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Gaussian Processes (GP)

Definition :

A SP Z on Rd is a Gaussian Process (GP) when – for all n ∈ N∗ and – all{
x(1), . . . ,x(n)} ∈ X × · · · × X , the random vector z ≡

(
Z(x(1)), . . . , Z(x(n))

)
is

Gaussian.

a GP is fully characterized by :

its mean : µ(x) = E [Z(x)],
and covariance : C(x,x′) = E [(Z(x)− µ(x)) (Z(x′)− µ(x′))] (drives GP
amplitude/speed of variation)

We sometimes note it as : Z(x) ∼ GP(µ(x), C(x,x′))

Roughly speaking a (weakly) stationary GP bears a covariance that is stationary, i.e.
C(x,x′) only depends on relative distances btw coordinates |xi − x′i| (translation
invariant)

Gaussian vectors and gaussian processes
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GP realizations

From the display of 5 of their realizations, can you say that Z1, Z2, Z3 et Z4 are GP ?
stationary ?

Gaussian vectors and gaussian processes
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Gaussian process conditioning theorem

given x 7→ Z(x) a GP(µ(x), C(x,x′)), we condition the process on the knowledge
of n deterministic values {Z(x(1)) = z1, . . . , Z(x(n)) = zn} of the physical quantity
that it represents

Notations
Z = {Z(x(1)), . . . , Z(x(n))} observation vector and z = (z1, . . . , zn) observed values
µ = (µ(x(1)), . . . , µ(x(n))) mean vector of Z
R : covariance of Z with Rij = [C]ij = C(x(i),x(j))

r(x) =
(
C(x,x(1)), . . . , C(x,x(n))

)
: n× 1 covariance vector btw Z(x) and Z

Conditioning theorem for vectors is generalized to GP
the conditioned process :
x 7→ Zcond(x) = (Z(x) | {Z(x(1)) = z1, . . . , Z(x(n)) = zn}) is a GP of
“conditioned” mean and covariance : µcond(x) and Ccond(x,x′), such that :

µcond(x)≡ E(Z(x) | Z = z) = µ(x) + r(x)TR−1(z − µ)

Ccond(x,x′)≡ cov(Z(x), Z(x′)) | Z = z) = C(x,x′)− r(x)TR−1r(x′)

Gaussian vectors and gaussian processes
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z is not initially conditioned

Gaussian vectors and gaussian processes
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z conditioned in 1 point
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z conditioned in 2 points
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z conditioned in 3 points

Gaussian vectors and gaussian processes
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z conditioned in points

Gaussian vectors and gaussian processes
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Visualization of the conditioning

Let Z(x) be a stationary GP of mean µ(x) = 0 and covariance
C(x, x′) = exp

(
−(x− x′)2/100

)
.

Z conditioned in 5 points

Gaussian vectors and gaussian processes
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let us get back to our metamodeling construction :
comparing with a classic linear regression

linear regression :

s(x) ≈ fT (x)β + ε, ε ∼ N (0, σ).

where f are called the regressors
GP metamodeling :

s(x) ≈ fT (x)β + ε(x), ε ∼ SCGP,

SCGP ↔ "(stationary conditioned) GP".
Idea is to add a stochastic contribution that
depends on x !
In Bayesian statistics modeling, we represent a
deterministic, unknown number by the
realization of a random variable (⇒ enables to
incorporate expert knowledge, gives access to Bayes
formula...).

Here, we do the same with
functions !

Regression via conditioned GP
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Principle

Objective : harness the theory of conditioned GP to improve our prediction,

add some confidence onto the prediction,

be less dependent on the choice of the regressors f .

Example : d = 1, y(x) = sin(x2), X = [0, 4].

Regression via conditioned GP
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Kriging model :
representing a deterministic/unknown function y = s(x ∈ X ), of model s, by a
realization of a GP

this metamodeling approach assumes that :

s(x) ≈ fT (x)β + Z(x), x ∈ X

f(x) ↔ (chosen) deterministic functions are called the trend

β ↔ (in general unknown) weighting coefficients,

Z(x) ↔ stationary GP of zero mean and (in general unknown) covariance
C(x,x′).

By construction, {s(x), x ∈ X} becomes a GP, of mean x 7→ fT (x) and
covariance (x,x′) 7→ C(x,x′).

Regression via conditioned GP
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Kriging conditioning

again, we condition the process on the knowledge of – the covariance C(x,x′) and
– the n solver values {s(x(1)) = y1, . . . , s(x(n)) = yn}

the conditioned process : ŝ(x) = (s(x) | {s(x(1)) = y1, . . . , s(x(n)) = yn}) is a GP
of distribution N (µ̂(x), σ̂2(x)), such that :

µ̂(x) = fT (x)β + r(x)TR−1(y − Fβ)

σ̂2(x) = C(x,x)− r(x)TR−1r(x)

Metamodel in practice :
the conditional mean µ̂(x) is taken as the surrogate model

Notations

y = (y1, . . . , yn) observed values

F = (f(x(1)), . . . , f(x(n))) regressors values at x DoE points

Rij = [C]ij = C(x(i),x(j))

r(x) =
(
C(x,x(1)), . . . , C(x,x(n))

)
: covariance vector btw s(x) and s

Gaussian vectors and gaussian processes
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BLUP (Best Linear Unbiased Predictor) or universal kriging

again, we condition the process on the knowledge of – the covariance C(x,x′) and
– the n solver values {s(x(1)) = y1, . . . , s(x(n)) = yn}

if there exists f(x), β (unknown), Z(x) / for all x ∈ X , s(x) = 〈f(x),β〉+ Z(x),
then the best linear unbiased predictor of an unobserved quantity s(x) is a GP of
distribution N (µ̂BLUP(x), σ̂2

BLUP(x)) :

µ̂BLUP(x) = fT (x)β̂ + r(x)TR−1(y − F β̂),

σ̂2
BLUP(x) = C(x,x)− r(x)TR−1r(x) + u(x)T

(
F TR−1F

)−1
u(x),

Notations

β̂ =
(
FTR−1F

)−1
FTR−1y, u(x) = FTR−1r(x)− f(x),

with β̂ is the maximum likelihood approximation of β

Gaussian vectors and gaussian processes
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BLUP nice properties

linear relative to the observations : there exists {ai(x), 1 ≤ i ≤ n} such that
ŝ(x) =

∑n

i=1 ai(x)s(x(i)),

unbiased : E [ŝ(x)] = E [s(x)],

optimal in the L2 norm among unbiased linear predictors :

ŝ(x) = arg min
s̃∈LUP

E
[
(s(x)− s̃)2] ,

interpolant : P (ŝ(xi) = yi) = 1.

This BLUP estimator is very simple and popular

Regression via conditioned GP
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1D illustration

The goal is to approximate the deterministic/unknown 1D function.
Hypothesis : the function y = s(x ∈ X ) is a realization of a GP
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Regression via conditioned GP
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1D illustration

The GP is strongly conditioned by the few observations (black dots).
The surrogate model is obtained as the mean trajectory of the GP and its variance
allows to build prediction confidence intervals.
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x

y(
x)

●

●

●

●

●

0 0,2 0,4 0,6 0,8 1

0
0,

2
0,

4
0,

6
0,

8
1

Moyenne et variance

x

y(
x)

●

●

●

●

●

0 0,2 0,4 0,6 0,8 1

0
0,

2
0,

4
0,

6
0,

8
1

●

●

●

●

●

Regression via conditioned GP
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Importance of the covariance kernel

C(x,x′) = E
[(
s(x)− fT (x)β

) (
s(x′)− fT (x′)β

)]
.

from knowledge of s at n points in X , how to identify the covariance C, corner
stone of the GP metamodeling construction ?

A covariance function must be symmetric et definite positive.

C(x,x′) must account for the regularity of s.

Roadmap

1. choose a simple parametric form (expert judgement).

2. identify the most-likely values of the involved hyperparameters, thanks to
the observations

Regression via conditioned GP
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Standard covariance functions

"nugget" function : C(x,x′) = σ2δ0(x− x′),

linear kernels : C(x,x′) = σ2
d∏
i=1

max
(

0, 1− |xi − x
′
i|

`i

)
,

exponential kernels : C(x,x′) = σ2 exp

(
−

d∑
i=1

|xi − x′i|
`i

)
,

gaussian kernels : C(x,x′) = σ2 exp

(
−

d∑
i=1

(xi − x′i)2

`2i

)
,

Matern kernels, with Γ Euler function and BIIIν Bessel function of the third kind :

C(x,x′) = σ2
d∏
i=1

1
2ν−1Γ(ν)

(
2
√
ν
|xi − x′i|

`i

)ν
BIIIν

(
2
√
ν
|xi − x′i|

`i

)
;

ν = {1/2, 3/2, 5/2}

→ Important hyperparameters : variance σ2, correlation lengths `i and exponents ν.

Regression via conditioned GP
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Matern covariance C(x,x′) ∼ σ2k
((
|xi−x′

i|
`i

)ν)
- interpreting ν

exponent of |xi−x′
i|

`i
relates to the differentiability and therefore the regularity of the

SP

if no a priori information about s regularity, then use the Matern function with ν = 5/2

Regression via conditioned GP
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Matern covariance C(x,x′) ∼ σ2k
((
|xi−x′

i|
`i

)ν)
- interpreting `c

the correlation length quantities the “radius of influence” across different points

if `→ 0 : then the SP becomes “white noise”

if `→ +∞ : then the SP looses its variability and becomes a constant function

Regression via conditioned GP

Didier Lucor (CIMPA 2021) An introduction to robust optimization II 32 / 51



Matern covariance C(x,x′) ∼ σ2k
((
|xi−x′

i|
`i

)ν)
- interpreting σ

The variance describes the amplitude variations of the conditioned GP. It also
characterizes the level of confidence of the prediction outside of the observed points.

if σ → 0 : prediction becomes almost deterministic and the surrogate gets
closer to the true model
if σ → +∞ : it means we do not show any confidence to the prediction
outside of the observed points

Regression via conditioned GP
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Identification of optimal hyperparameters

if no a priori knowledge about (ν, `j , σ), then we can try to gain some information
by exploiting the observations at

{
x(i), 1 ≤ i ≤ n

}
.

get coherent values of (ν, `j , σ) with the data ↔ maximizing likelihood
L (yi, ν, σ, `j) of obtaining data s(x(i)) = y(i) given (ν, σ, `j).

we can choose ν a priori and not try to estimate it

in general, we first estimate σ by ML :

σ̂2 = (y − F β̂)TR−1(y − F β̂)
n− p

estimations of (β, σ) are then plugged into the likelihood in order to estimate `j ...
no analytical solution (only numerical optimization...)

another approach for estimation relies on the cross-validation error, but still
involves an optimization step for the determination of the correlation length

Regression via conditioned GP
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Metamodel validation

The adequacy of the metamodel can be evaluated on a separate testing sample or
from a cross-validation (CV) procedure

CV errors : e2
i =

(
s(x(i))− µ̂C(−i)(x(i))

)2
with µ̂(−i) the mean prediction evaluated from

{
s(x(k)), k 6= i

}
.

quality of prediction evaluated from µ̂C(x) from Q2 coefficient :

Q2 = 1− 1
n

∑n

i=1 e
2
i

v̂ar(s(x))

then to have a global error criteria, we introduce ε2
V C :

ε2
CV (ŝ(x)) = 1

n

N∑
i=1

e2
i

σ̂2
(−i)(x(i))

with σ̂2
(−i), the prediction variance evaluated from

{
g(x(k)), k 6= i

}
.

Regression via conditioned GP
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Final remarks

Advantages :

easy to build (mostly analytical expressions)

(++) prediction variance provided allowing its precision to be quantified
adding new data points does not disturb the prediction
optimality among linear predictions
moderate dependence on the trend choice

Drawbacks :

modeling rather well suited for regular/stationary response surfaces
calibrating covariance parameters can be difficult
limitation to configurations for which the number of input parameters (the
dimension of x) is relatively small (<10-20).

Perspectives :

potential sequential learning, stepwise uncertainty reduction strategies

Regression via conditioned GP
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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

Surrogate modeling
Gaussian vectors and gaussian processes
Regression via conditioned gaussian processes
Challenge of dimensionality and space-filling designs

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Organization of the class
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Sphere in d dimension

VC : cube volume of side 2r in d dimension : (2r)d

VS : sphere volume of radius r in d dimension :
(√

πr
)d

Γ (d/2 + 1)
ratio VS/VC :

d 1 2 3 4 5 8 10 16
VS/VC 100% 78.5% 30.1% 52.4% 16.4% 1% 0.25% 4e-6%

Sphere volume / cube volume :

2 4 6 8 10

0
.0

0
.4

0
.8

d

Hypersphere volume tends to 0 when d→∞.

Challenge of dimensionality for metamodeling
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Cube in d dimension

Cube volume of side c in d dimension : cd

Cube volume of side c− ε in d dimension : (c− ε)d

Ratio :
d 1 2 4 8 16 20 30 40

VCe/VC 90% 81% 65.6% 43% 18% 12% 4% 1.5%

Cube volume of side 0.9/ Cube
volume of side 1 :

In high dimension all the volume is contained "in the shell".
→ a posteriori reducing parametric domain, may disregard all existing computations

Challenge of dimensionality for metamodeling
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Selection of small proportion of data

Selecting only a portion p of data ↔ considering an hypercube of side p1/d.

Dimension 1 : p1/d = 0.01

Dimension 2 : p1/d = 0.1
viz : projecting onto the first two axes

if we have n points in an hypercube of
dimension d = 4 and we get rid of 1%
of the points (outliers) ⇒ same as
considering 10% of individual range of
each parameter is dismissed.

Challenge of small DoE for metamodeling
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Selection of small proportion of data

Selecting only a portion p of data ↔ considering an hypercube of side p1/d.

Dimension 1 : p1/d = 0.01

Dimension 8 : p1/d = 0.56
viz : projecting onto the first two axes

if we have n points in an hypercube of
dimension d = 8 and we get rid of 1%
of the points (outliers) ⇒ same as
considering 56% of individual range of
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Selection of small proportion of data

Selecting only a portion p of data ↔ considering an hypercube of side p1/d.

Dimension 1 : p1/d = 0.01

Dimension 16 : p1/d = 0.75
viz : projecting onto the first two axes

if we have n points in an hypercube of
dimension d = 16 and we get rid of
1% of the points (outliers) ⇒ same as
considering 75% of individual range of
each parameter is dismissed.

Challenge of small DoE for metamodeling
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High-dimensional parametric spaces are “strange” and essentially empty ! → very hard
capturing local phenomena with metamodels
Wish list

try to come up with design of numerical experiments (DoE) that optimize the
positioning of our data to build good metamodels, while trying to break free from any
particular model

obtain information in any part of the domain. Be able to remove non-influencing
parameters and have good projections in subspaces

robust to the rise in dimension : in terms of cost, properties, . . .

sequential capability (refinements, etc.)

Space filling designs (SFD)
DoE whose points are arranged almost everywhere in the domain of input parameters
x ∈ Rd in order to explore "as well as possible" the space of possibilities of the system
output

→ domain of optimal designs for computer experiments

Challenge of dimensionality for metamodeling
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d = 2 et n = 10

Random DoE (Monte Carlo)

Does not fill up space

Factoriel design with 3 levels

Bad 1D projection

Exploratory Design of Experiments
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the precision of the exploration (and therefore the numerical cost, ie. number of
simulations n) strongly depends on the dimension d of the space.

regular grid with p levels (e.g. quadrature) : n = pd simulations

d = 2, p = 3 : n=9
d = 10, p = 3 : n=59049

−→ Curse of dimensionality !

In order to minimize n, we need samples with good input space cover

purely random sample does not meet this requirement : example (d = 2, n = 8)

Monte Carlo

Optimized
design
(Space Filling
Design)

Optimal exploration of an hypercube
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Geometrical criteria

1. Minimax DMinimax

minimize the maximum distance btw any domain point and the closest
point of the design

min
D

max
x

d(x,D) = max d(x,DMinimax) with d(x,D) = min
x(0)∈D

d(x, x(0))

no point in [0, 1]d is too far from a point of the DMinimax DoE

very good DoE but too expensive to build for d > 3 (optimization problem
with d× n parameters).

Space-filling designs (1)
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Geometrical criteria

2. Maximin DMaximin

maximise the minimum distance btw DoE points :

max
D

min
x(1),x(2)∈D

d(x(1), x(2)) = min
x(1),x(2)∈DMaximin

d(x(1), x(2)) (L2norme )

Tendency to place points close to the domain boundaries.

Space-filling designs (1)
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Discrepancy measure

Discrepancy : statistical criteria measuring the maximum deviation the curent
sample points distribution and a uniform distribution.

geometrical interpretation : comparaison btw subdomains volume and number of
points in subdomains

Q(t) ⊂ X = [0, 1[d, Q(t) = [0, t1[×[0, t2[× · · · × [0, td[

Discrepancy(DoE) = sup
Q(t)∈[0,1[d

∣∣∣∣∣nQ(t)

n
−

d∏
i=1

ti

∣∣∣∣∣
Low discrepancy : “uniform” distribution of the points in the
design space

In practice : we choose a discrepancy with an L2 norm
−→ Analytical form (discrepancy is centered for instance)

Space-filling designs (2)
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Low discrepancy sequences, i.e. Quasi Monte-Carlo (QMC)

there exists many sequences with low discrepancy that can be used for space
designs with good filling properties : Halton, Sobol, Van der Corput sequences . . .
and fast to build

same framework as Monte Carlo techniques but faster convergence O((lnn)s/n)
when d ≤ 10

Regular grid Monte Carlo Sobol’ sequence

Space-filling designs (2)
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Latin Hypercube Sampling (LHS)

Properties : uniform projections onto the marginals

Principle of an LHS(n, d) (d input parameters, n points) :

each dimension is divided into n intervals

random drawing of a point into each stratum

each of the strata levels is occupied a single time for each parameter

Space-filling designs (3)
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Avantages/drawbacks

very easy to build : each of the design columns is a permutation of {1, 2, . . . , n}
(strata choice)

no difficulties for large n and d

no duplicates when projecting onto subspaces

(–) BUT does not necessarily fills up the space !

→ possibility of improving LHS thanks to optimization of different criteria (space filling
criterion introduced before)

Space-filling designs (3)
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Goal
Sample a large-dimensional space in an "optimal" way, it ie get as much information as
possible about the behavior of the output Y = g(x), x ∈ Rd.

Exploratory plans are good candidates for filling the space well. They are optimized
either : :

on a criterion of distances between the points (minimax, maximin)

on a criterion of uniform distribution of points (discrepancy)

The property of uniform projections on the margins can be obtained via Latin
hypercube sampling (LHS)

It is possible to couple the 2 properties by building optimized LHS.

There are other types of designs for filling up the input parameter space (Voronoi
centroidal tessellations, maximum entropy DoE, Strauss design space, etc.)

To recap on space filling designs
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many choices for metamodels for OUU, but Kriging is appealing, for low to
moderate number of model parameters, and regular and relatively stationary design
functions

its mathematical foundation relying on Gaussian Processes is very strong, GP
provide a Bayesian prior over unknown functions with the benefit of uncertainty
quantification

its prediction of variance, essentially a measure of error, allows its precision to be
quantified

considering adequate space-filling Design of Experiments is beneficial to building
more accurate surrogate models in high parametric dimension

Short conclusion about Course II
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