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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)
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Motivation for metamodeling in OUU

Recalling the example of Reliability-Based Design type of optimization (RBDO) :

x? = arg min
x∈X

[
f(x,U)

]
,

such that P [gi(x,U) > 0] ≤ Pfi , for i ∈ {1, . . . ,m}
hj(x) ≤ 0, for j ∈ {m+ 1, . . . ,M}

computational cost : evaluation of expensive functionals (e.g. constraints gi) may
be very time consuming (call to expensive black-box solvers, e.g. FE, FV solvers) +
computation of statistical estimators (e.g. probability of failure (PoF) : needs many
evaluations 105−8)

e.g. MPP search, sampling methods, outer optimization loop led by GA optimizators

functional complexity : high dimensionality, nonlinearity, non-differentiability,
non-convex and non-connex domains of failure...

choice of spaces : both design/other parameters may contain deterministic/random
quantities... what is the best space over which to build our surrogate ?
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Surrogate-based RBDO flowchart
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Different (types) of surrogate models (SM) can help

various SM (one or many !) may be used for various terms, e.g. approximating : – the
objective function, – the constraints with the idea of approximating the full solver with
less information/data than needed/provided by the full solver.

data fit SM ( local/intermediate/global approximation scale) ;
e.g. polynomial response surfaces, polynomial chaos expansions, SVM, neural networks all
relate in part on the Design of Experiments (DoE)

multifidelity SM

Reduced-Order Model (ROM) SM

Once we hold a “good” SM we can use it at “no-cost” to generate large approximation
samples (e.g. to estimate probabilities of failure), determine some bounds, get some insights
about parametric sensitivity, etc...

When SM nested within an optimization loop, question of whether – building a new SM
every iteration or a – single global SM

Introduction
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in general a single global surrogate model is constructed for the optimization instead of a
bunch of independent models

Two strategies to build SM in the context of OUU

either 1. the SM is built prior to the optimization process and is used but not
updated during the optimization

or 2. the SM is refined at each iteration of the optimization process

in any case many variants exist as there are many different optimization processes,
with multisteps, etc.

moreover, the refinement criteria must account for the accuracy of the SM – so
it is VERY useful if the latter also bears a measure of confidence – in relation
to the optimization process !

Introduction
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Iterative adaptation of the surrogate : an active learning method

optimization : iteratively searches for optimum under a limited budget of simulations

→ so it makes sense to adapt the (DoE, SM) as we progress,
e.g. increasing its accuracy in important regions

⇒ importance of initial DoE :
Ss =

{
(x(i),U (i), y(i)) ∈ X ×A× R | y(i) = s(x(i),U (i)), i = 1, . . . , n

}
⇒ each new simulation must address a compromise btw exploration (enriching in x in

new regions), or exploitation (enriching in U in known good regions)
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Figure: e.g. of objective function to minimize x 7→ y(x; z = 0)
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Figure: Information : 5 noisy observations of the function.
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Figure: Different choices for new sampling
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Sampling for better design or to reduce uncertainties of current design

why repeating a simulation for the same design in optimization ?

Theory, bad idea : information gain seems to be no better than the previous
simulation at the same point...

In practice, by capitalizing the knowledge about the noise/uncertainty, chance to
better guide future exploration (long term benefit)

⇒ for instance, one compromise that maybe efficient is to slowly increase the number
of exploitations during optimization
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getting back to previous example...

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

y

(a) Exploitation

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

y
(b) Exploration

Figure: Initial information.

Introduction

Didier Lucor (CIMPA 2021) An introduction to OUU III 8 / 34



getting back to previous example...
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Figure: Condensing of exploitation information to guide further search (here we take the
mean : green stars).
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getting back to previous example...
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Figure: Polynomial predictions for new simulations.

Introduction

Didier Lucor (CIMPA 2021) An introduction to OUU III 8 / 34



1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)
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Unconstrained deterministic optimization problem

x? = arg min
x∈X⊂Rd

f(x,U),

xmin ≤ x ≤ xmax

Assumptions
objective function s ≡ f is a “black-box” solver : ie lacks known special structure
like concavity or linearity that would make it easy to optimize using techniques that
leverage such structure to improve efficiency

f is expensive to evaluate

only f(x) is observed : “derivative-free” (no first- or second-order derivatives : ie no
methods like gradient descent, Newton’s method)

Leverage
take advantage of GP capabilities to sequentially refine our metamodel

Bayesian optimization
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Recall : GP regression (Kriging)
based on the knowledge of the current DoE of size n :
Ss =

{
(x(i),U , y(i)) ∈ X ×A× R | y(i) = s(x(i),U , i = 1, . . . , n

}
, our function is

approximated as a realization of the following conditioned stochastic process :

sSCGP(x) = s(x) | s(X) = y,

which is a GP ∼ N (µ̂(x), σ̂2(x)), with :

µ̂(x) = fT (x)β̂ + r(x)TR−1(y − F β̂),

σ̂2(x) = C(x,x)− r(x)TR−1r(x) + u(x)T
(
F TR−1F

)−1
u(x),

Notations recall

β̂ =
(
FTR−1F

)−1
FTR−1y, u(x) = FTR−1r(x)− f(x),

with β̂ is the maximum likelihood approximation of β

Bayesian optimization... ← finally making use of GP !
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Infill criteria (UNCONSTRAINED optim)

Probability Improvement (PI) : new sample at xn+1 = arg maxx∈X PI(x)

PI(x) = Φ (w) ,

Expected Improvement (EI) : new sample at xn+1 = arg maxx∈X EI(x)

I(x) = max (0,min(y)− ŝ(x)) with PI(x) =
∫

R
I(x)dŝ(x)

PI(x) = (min (y)− ŝ(x)) Φ (w) + σ̂(x)φ(w),

with w = min (y)−ŝ(x)
σ̂(x) , Φ ≡ CDFN and φ ≡ PDFN

Bayesian optimization
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Efficient Global Optimization (EGO) [Jones et al. 1998]

1 built a first GP for the QoI (e.g. objective function) from a scarcely sampled DoE
of size n (e.g. max. log-likelihood on σ and correlation lengths of the SP)

2 xn+1 = arg maxx∈X EI(x) (in high dimension with another optimizer, e.g. CMA-ES)
[Hansen and Ostermeier, 2001]

3 run the expensive solver yn+1 = s(xn+1) and update the DoE : n← n+ 1

4 stop when (n > N) or goto 2

EGO : a good trade-off btw exploitation/exploration without arbitrary ad-hoc
procedure ; very efficient when combined with EI criteria

efficiency : it requires few function calls to get close to optima, but the efficiency
comes from the order in which points are sampled

does not converge in the traditional sense : it creates dense samples in the
parametric space

Bayesian optimization
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EGO example

The Expected Improvement

Measure of progress: the improvement, I (x) = max (0, (min(F )� Y (x))).
Acquisition criterion:
EI(x) =

R +1
�1 I (x) dy(x) = · · · =

p
c(x , x) [w(x)cdfN (w(x)) + pdfN (w(x))]

with w(x) = min(F )�m(x)p
(c(x ,x))

.

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 16 / 49

(a)

Bayesian optimization
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EGO example

Expected Improvement

x t+1 = arg maxx2X EI(x)

Let’s see how it works... iteration 1

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 17 / 49

(b)

Bayesian optimization

Didier Lucor (CIMPA 2021) An introduction to OUU III 14 / 34



EGO example

Expected Improvement

x t+1 = arg maxx2X EI(x)... iteration 2

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 17 / 49

(c)

Bayesian optimization
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EGO example

Expected Improvement

x t+1 = arg maxx2X EI(x)... iteration 3

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 17 / 49

(d)

Bayesian optimization
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EGO example

Expected Improvement

x t+1 = arg maxx2X EI(x)... iteration 4

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 17 / 49

(e)

Bayesian optimization
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EGO example

Expected Improvement

x t+1 = arg maxx2X EI(x)... iteration 5

R. Le Riche (CNRS) Optimization under uncertainties Jan. 2020 17 / 49

(f)

Bayesian optimization
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Constrained deterministic optimization problem

x? = arg min
x∈X⊂Rd

f(x,U),

such that gi(x,U) ≤ 0, for i ∈ {1, . . . ,m}
hj(x) ≤ 0, for j ∈ {m+ 1, . . . ,M}

Bayesian optimization
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Infill criteria (CONSTRAINED optim) each constraint is approximated by SCGP
surrogate.

Probability of Feasibility (PF) [Schonlau et al. 1998, Parr et al. 2012] :

EI(x)× PF(x) = EI(x)
m∏
i=1

PFi(x) with PFi = Φ (−w) and w = ĝi(x)
σ̂(x)

Constrained EI [Sasena et al., 2001], solving the EI optimization as a constrained
auxiliary optimization problem : arg max

x∈X
EI(x),

such that ĝi(x) ≤ 0,

Expected Violation (EV) [Audet et al., 2000], different constrained auxiliary
optimization : arg max

x∈X
EI(x),

such that EVi(x) ≥ tEV , for i ∈ {1, . . . ,m} with
EVi(x) = −ĝi(x)PFi(x) + σ̂gi (x)φ(w) (1)

Expected improvement for contour approximation [Ranjan et al., 2008]

Bayesian optimization
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AK-MCS algorithm
In reliability (ie. rare event estimation), we wish to evaluate the PoF → learning
emphasis is put on vicinity of the limit-state surface

1 Generation of a large MC population S in the
design space

2 Definition of the initial DoE(random selection)

3 construction of the Kriging model used for :
ĝi prediction + PoF estimation on S

4 Identification of the best next point x? based
on criteria → evaluate ĝi(x?)

X deviation number : u(x) = |ĝ(x)|
σĝ(x)

X expected feasibility function (EFF),
EGRA method [Bichon et al. 2008]

Figure: example of AK-MCS with
u−criteria at 7th iteration.

Kriging-based active learning reliability method
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AK-MCS algorithm for reliability analysis
In reliability (ie. rare event estimation), we wish to evaluate the PoF → learning
emphasis is put on vicinity of the limit-state surface

1 Generation of a large MC population S in the
design space

2 Definition of the initial DoE(random selection)

3 construction of the Kriging model used for :
ĝi prediction + PoF estimation on S

4 Identification of the best next point x? based
on criteria → evaluate ĝi(x?)

5 Stopping condition on learning :
if no : enrichment of DoE with new best
point and goto 2
else : enlarge MC population S ← S+ and
goto 1 or end

Figure: Monte-Carlo population
estimated AK-MCS with u−criteria at
7th iteration.

Kriging-based active learning reliability method
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1 Course I : Concepts, formalism and some classes of resolution methods for simple
optimization under uncertainty (1.5h, Thursday)

2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)

Bayesian optimization
Bayesian optimization under uncertainties
Surrogate modeling deployment in the context of RBDO
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x? = arg min
x∈X

L [f(x,U)] ,

such that Ki [gi(x,U)] ≤ 0 for i ∈ {1, . . . ,m} (2)
xmin ≤ x ≤ xmax

different potential sources of uncertainties...

even when U ≡ U is nominal, the measure of risk (L,K) used to close the OUU
problem is often approximated by a statistical estimator (e.g. Monte-Carlo
estimator of the mean), introducing noise or bias.
In this case it is useful to – consider version of Kriging with noise (keyword :
nugget) [Le Riche & Durrande, 2019], – adjust EI-EGO criteria not reliable anymore

when U is random, assuming we will rely on SMs → reducing statistical estimator
errors (e.g. large samples), the chosen formulation will have to account for the
complexity induced by the U variability and dimensionality

Bayesian optimization under uncertainties
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“common-sense” algorithm

1 Create an initial sparse DoE, (x(j),U (j), f(·, ·) or gi(x(j),U (j))) and use it to
initialize 1/many Gaussian Process(es) (in X or in augmented space)

2 Use the GP(s) to choose the next best x(n+1)

3 Use the GP(s) to choose the next U (n+1) knowing x(n+1) (steps 2 & 3 may be
simultaneous !)

4 Evaluate f(x(n+1),U (n+1)) and gi(x(n+1),U (n+1)), update the GPs, stop or goto
2

Infill criteria in both design and random parameter spaces is problem-dependent !
(statistical measure and its estimator)

what is the best metamodeling space ?

Bayesian optimization under uncertainties
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choice of metamodeling space

1 x is deterministic and independent from U ⇒ W = {x,U}T is the vector
gathering all random/deterministic input parameters of the system to optimize
⇒ the hybrid space W ≡ X ⊗A of dimension is (d+ n), is the tensor product btw
the design deterministic space and the random parameter space [Kharmanda 2002]

2 x taken uniformly distributed and ind. from U , all variables fitting within a proba.
framework, W = {x,U}T : new vector of variables of an augmented space

Figure: Example of objective : arg minx∈X E [f(x, U)] ; formulation :
f(x, U) ≈ f̂(x, U) : (GP) so E [f(x, U)] ≈ EU

[
f̂(x, U)

]
≡ f̃(x) : (GP) ; infill criteria on f̃ ...

[Janusevskis & Le Riche, 2012]

Bayesian optimization under uncertainties
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choice of metamodeling space for other form of Reliability-Based Design type of
optimization (RBDO) :

x? = arg min
x∈X

[
f(x,U)

]
,

such that P [gi(D(x),U) > 0] ≤ Pfi , for i ∈ {1, . . . ,m}
hj(x) ≤ 0, for j ∈ {m+ 1, . . . ,M}

3 sometimes the OUU problem involves design variables, now noted D, which are
also considered random but with a known distribution depending on a
(deterministic !) unknown hyperparameter x to be optimized, e.g. fD|x ∼ N (µ, σ).
In this case :

x refers to this “nominal” dimension of the design parameters
D(x) ∼ fD|x denotes the uncertain design parameters (e.g. due to
manufacturing tolerances), conditioned on the design parameters x

W = {D|x,U}T ∼ fW is the augmented vector

the augmented reliable space is random of dimension (dim [D] + n) and can
be composed of tensorization of hyperrectangular confidence regions
(constructed from quantiles)

Bayesian optimization under uncertainties
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example of a 2D augmented reliable space

U

q+
U

q−
U

x x+x−

fU

fD|x− fD|x+

!αU /2

!αU /2

q−
D|x− q+
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Figure: X =
∏d

k=1

[
x−
k
, x+
k

]
; D =

∏d

k=1

[
q−
Dk|x

−
k

, q+
Dk|x

+
k

]
; A =

∏n

l=1

[
q−Ul

, q+
Ul

]
with

q±· ≡ F−1
· (0/1± α·/2).

Bayesian optimization under uncertainties
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2 Course II : quantification of uncertainty for more efficient optimization under
uncertainties : metamodeling with Gaussian Processes (1.5h, Friday)

3 Course III : Metamodeling-based Reliability-Based Design Optimization (1.5h,
Saturday)
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surrogate of the constraint : limit-state is poorly captured

x2

failure domainsafe domain

x1

gi(x)
̂gi(x)

f(x, U)

SM deployment in the context of RBDO
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Kriging advantage : holds a local measure of confidence

failure domainsafe domain

x1

x2gi(x)
̂gi(x)

f(x, U)

SM deployment in the context of RBDO
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given a design point : enrichment criteria must target limit-state...

̂gi(x)
x2

failure domainsafe domain

x1

gi(x)

f(x, U)

+

+
++

+
+

̂gi(x)

SM deployment in the context of RBDO
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... to refine the SM and better estimate probability of failure

failure domainsafe domain

x1

x2gi(x)
̂gi(x)

f(x, U)

+ +++
+
+

+

+

+

+
++

+

+

̂gi(x)

SM deployment in the context of RBDO
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here the metamodel is refined at each iteration of the optimization algo...

failure domainsafe domain

x1

x2gi(x)
̂gi(x)

f(x, U)

+

+ +++
+
+

+

+

+

+
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+

+

̂gi(x)

SM deployment in the context of RBDO
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... until convergence.

failure domainsafe domain

x1

x2gi(x)
̂gi(x)

f(x, U)

+ +++
+
+

+

+

++
+

+

+++
+

+

+
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+
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SM deployment in the context of RBDO
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Reference paper [Moustapha, M., Sudret, B., Bourinet, J. M., & Guillaume, B. (2016).
Quantile-based optimization under uncertainties using adaptive Kriging surrogate models.
Structural and multidisciplinary optimization, 54(6), 1403-1421.]

They propose a metamodel-based strategy for RBDO problems of this type :

d? = arg min
d∈D

(d1 + d2)

such that P [gi(X(d1, d2)) > 0] ≤ 1.3 · 10−3 for i ∈ {1, . . . ,m = 3}
(0, 0) ≤ d = (d1, d2) ≤ (10, 10)

with,

g1(X(d)) = X2
1 X2

20 − 1

g2(X(d)) = (X1 +X2 − 5)2

30 + (X1 −X2 − 12)2

120 − 1

g3(X(d)) = 80
X2

1 + 8X2 + 5 − 1

Quantile-based OUU with adaptive Kriging
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Reference paper [Moustapha, M., Sudret, B., Bourinet, J. M., & Guillaume, B. (2016).
Quantile-based optimization under uncertainties using adaptive Kriging surrogate models.
Structural and multidisciplinary optimization, 54(6), 1403-1421.]

They propose a metamodel-based strategy for RBDO problems :

Thanks to the Kriging variance (measure of local accuracy of the surrogate), they
propose a two-stage DoE enrichment to construct the surrogate model

1. global stage : reduce the Kriging epistemic uncertainty and adds points in the
vicinity of the limit-state surface
2. local stage : checks, and if necessary, improves locally the accuracy of the
quantiles estimated along the optimization iterations

Application on a test case with nonlinear constraints in UQLab.

Quantile-based OUU with adaptive Kriging
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Quantile-based optimization under uncertainties using adaptive Kriging surrogate models.
Structural and multidisciplinary optimization, 54(6), 1403-1421.]

They propose a metamodel-based strategy for RBDO problems :

Thanks to the Kriging variance (measure of local accuracy of the surrogate), they
propose a two-stage DoE enrichment to construct the surrogate model

1. global stage : reduce the Kriging epistemic uncertainty and adds points in the
vicinity of the limit-state surface

similar to an AK-MCS refinement strategy on the parameters, BUT in
contrast to AK-MCS, the constraint is defined wrt d in the design space
while the Kriging model is built in the augmented space X(d).
IDEA : find new point in augmented space → improvement of quantile
estimation in design space

2. local stage : checks, and if necessary, improves locally the accuracy of the
quantiles estimated along the optimization iterations

Quantile-based OUU with adaptive Kriging
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Equivalence between RBDO and quantile-based formulation
Standard reliable formulation via PoF defined for particular constraint gi :

K [gi(x,U)] ≡ P [gi(x,U) > 0] ≤ P gi
f ↔ Pf (� 1)

for a given design : P gi
f (x) = P [gi(U |x) > 0] =

∫
gi(U|x)>0

fU|X(U |x)dU

In general we can express the constraint as : gi(x,U) =Mi(x,U)− ḡi(=threshold)

P [gi(x,U) > 0] ≤ Pf ⇐⇒ P [Mi(x,U) ≥ ḡi] ≤ Pf
⇐⇒ P [Mi(x,U) ≤ ḡi] ≥ 1− Pf ≡ α(. 1)

we can introduce the quantile : Qα [x; ·] = inf{q ∈ R : P [· ≤ q] ≤ α} ⇒

Equivalence between RBDO and quantile-based formulation

P [gi(x,U) > 0] ≤ Pf ⇐⇒ Qα [x;Mi(x,U)] ≤ ḡi
⇐⇒ Qα [x; gi(x,U)] ≤ 0 (put otherwise)

quantile approach : easier coupling with already existing deterministic design process ; outer loop
explores the design space while inner loop simply computes constraints quantiles

Relying on computation of probability or quantile ?
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Integrating uncertainties into the design process greatly modifies the optimization
problem to be solved.

The statistical measures of risk must be carefully adapted to the problem.

Accounting for the uncertainty induces a LARGE computational overhead

Kriging and Gaussian Processes are nicely tunable metamodels that reduce the
cost but remain limited in terms of dimensionality

machine learning (deep neural networks) may be the future of more efficient
metamodeling in this framework

Conclusion about the OUU class
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Optimization Under Uncertainties

OUU : very broad topic, many things to improve/couple/discover !
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Thanks for attending this class !

Big thanks to the organizers !

didier.lucor@lisn.upsaclay.fr
https://perso.limsi.fr/lucor/

The end
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Some references including active research teams on the topic
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