
JOURNAL OF OPTIMIZATION THEORY AND APPLICATION: Vol. 79, No. 1, OCTOBER ~993

Lipschitzian Optimization
Without the Lipschitz Constant

D. R. JONES, I C. D. I~RTTUNEN, 2 AND B. E. STUCKMAN 3

Communicated by L. C. W. Dixon

Abstract. We present a new algorithm for finding the global minimum
of a multivariate function subject to simple bounds. The algorithm is a
modification of the standard Lipschitzian approach that eliminates the
need to specify a Lipschitz constant. This is done by carrying out
simultaneous searches using all possible constants from zero to infinity.
On nine standard test functions, the new algorithm converges in fewer
function evaluations than most competing methods.

The motivation for the new algorithm stems from a different way
of looking at the Lipschitz constant. In particular, the Lipschitz
constant is viewed as a weighting parameter that indicates how
much emphasis to place on global versus local search. In standard
Lipschitzian methods, this constant is usually large because it must
equal or exceed the maximum rate of change of the objective function.
As a result, these methods place a high emphasis on global search and
exhibit slow convergence. In contrast, the new algorithm carries out
simultaneous searches using all possible constants, and therefore
operates at both the global and local level. Once the global part of the
algorithm finds the basin of convergence of the optimum, the local part
of the algorithm quickly and automatically exploits it. This accounts
for the fast convergence of the new algorithm on the test functions.

Key Words. Global optimization, Lipschitzian optimization, space
covering, space partitioning.

1Staff Research Scientist, General Motors Research and Development Center, Warren,
Michigan.

ZTechnical Consultant, Brooks and Kushman, Department of Patent and Computer Law,
Southfield, Michigan.

3Patent Attorney, Brooks and Kushman, Department of Patent and Computer Law,
Southfield, Michigan.

i57

0022-3239/93/1000--0157507.00/'0 5© 1993 Plenum Publishing Corporation

158 JOTA: VOL. 79, NO. 1, OCTOBER 1993

1. Introduction

From a theoretical point of view, the Lipschitzian approach to global
optimization has always been attractive. By assuming knowledge of a
Lipschitz constant (i.e., a bound on the rate of change of the objective
function), global search algorithms can be developed and convergence
theorems easily proved. Since Lipschitzian methods are deterministic, there
is no need for multiple runs. Lipschitzian methods also have few
parameters to be specified (besides the Lipschitz constant), and so the need
for parameter finite-tuning is minimized. Finally, Lipschitzian methods can
place bounds on how far they are from the optimum function value, and
hence can use stopping criteria that are more meaningful than a simple
iteration limit.

In practice, however, Lipschitzian optimization has three major
problems: (i) specifying the Lipschitz constant; (ii) speed of convergence;
and (iii) computational complexity in higher dimensions. This paper shows
how these problems can be eliminated by modifying the standard
approach.

Specifying a Lipschitz constant is a practical problem because a
Lipschitz constant may not exist or be easily computed. For example, in
optimizing a nonlinear control system, the objective function may be based
on a time-consuming simulation or, perhaps, an experiment on the real
system (Ref. 1). Similarly, in mechanical engineering applications, designs
are often evaluated by a lengthy finite-element analysis. In these cases, no
closed-form expression for the objective function is available, and so
computing a Lipschitz constant is usually difficult or impossible. The new
algorithm eliminates the need to specify the Lipschitz constant by carrying
out simultaneous searches using all possible constants from zero to infinity.
The exact sense in which this is done will become clear later.

The second problem--speed of convergence--is closely related to the
first. As we describe later, the Lipschitz constant can be viewed as a
weighting parameter that indicates how much weight to place on global
versus local exploration. In standard Lipschitzian methods, this constant is
usually large because it must equal (or exceed) the maximum rate of
change of the objective function. As a result, these methods place a high
emphasis on global search and exhibit slow convergence. In contrast, the
new algorithm uses all possible constants, and therefore operates at both
the global and local level. Once the global part of the algorithm finds the
basin of convergence of the optimum, the local part of the algorithm
quickly and automatically exploits it. This is why the new algorithm can
converge more quickly than the standard approach.

The third and final problem has to do with computational complexity.

JOTA: VOL. 79, NO. i, OCTOBER 1993 159

When optimizing a function of n variables subject to simple bounds, the
search space is a hyperrectangle in n-dimensional Euclidean space. Most
previous Lipschitzian algorithms (Refs. 2-4) partition this search space into
smaller hyperrectangles whose vertices are sampled points. Horst and Tuy
(Ref. 5) review several such methods. To initialize the search, these algo-
rithms must evaluate all 2 ~ vertices of the search space. The new algorithm
cuts through this computational complexity by sampling the midpoint of
each hyperrectangle as opposed its vertices. Whatever the number of
dimensions, a rectangle can have only one midpoint.

As mentioned above, the new algorithm does not need a Lipschitz
constant to determine where to search. But knowledge of a Lipschitz
constant can be helpful in determining when to stop searching (e.g., stop
when one is certain to be within e of the optimum function value). When
a Lipschitz constant is not known, the algorithm stops after a prespecified
number of iterations.

The new algorithm has only one parameter that must be specified in
addition to the iteration limit. Empirical results suggest that the algorithm
is fairly insensitive to this parameter, which can be varied by several orders
of magnitude without substantially affecting performance. In contrast,
many global search methods have several algorithmic parameters that must
be carefully adjusted to ensure good results. One of our goals in developing
the new algorithm was to eliminate the need to experiment with such
algorithmic parameters.

We call the new algorithm DIRECT. This captures the fact that it is a
direct search technique and also is an acronym for dividing rectangles, a
key step in the algorithm. We will introduce DmECT as a modification and
extension of a one-dimensional Lipschitzian algorithm due to Shubert
(Ref. 2). We begin in Section 2 by reviewing Shubert's method and dis-
cussing why it is hard to extend it to more than one dimension. Section 3
then modifies Shubert's method to make it tractable in higher dimensions
and to eliminate the need to specify a Lipschitz constant. This gives us the
one-dimensional DmECT algorithm. Section 4 extends this one-dimensional
algorithm to several dimensions. Section 5 proves convergence. Section 6
compares the performance of DIRECT to other algorithms, and Section 7
summarizes our results.

2. Lipschitzian Optimization in One Dimension

Consider the problem of finding the global minimum of a function
f (x) defined on the closed interval If, u]. Standard Lipschitzian algo-
rithms assume that there exists a finite bound on the rate of change of the

160 JOTA: VOL. 79, NO. 1, OCTOBER 1993

function; that is, they assume that there exists a positive constant K, the
Lipschitz constant, such that

I f (x) - f (x ') l < ~ K l x - x ' l , for all x , x ' e [g, u]. (1)

This assumption can be used to place a lower bound on the function in any
closed interval whose endpoints have been evaluated. Figure 1 illustrates
this for a hypothetical function on the interval [a, b]. If we substitute a
and b for x' in (1), we see that f (x) must satisfy the following two
inequalities:

f (x) >~ f (a) - K(x -- a), (2)

f (x) >~ f (b) + K(x - b). (3)

These inequalities correspond to the two lines with slopes - K and + K
shown in Fig. 1. Since the function must lie above the V formed by the
intersection of these two lines, the lowest value that f (x) can attain occurs
at the bottom of the V. If we denote this point by X(a, b, f , K) and the
corresponding lower bound of f by B(a, b, f , K), then we have

X(a, b, f , K) = (a + b)/2 + [f (a) - f (b)] / (2K), (4)

B(a, b, f, K) = [f (a) + f (b)] /2 - K(b - a). (5)

These two equations form the core of Shubert's algorithm (Ref. 2). The
basic idea is shown in Fig.. 2. We initialize the search by evaluating the
function at the endpoints (and u; see part (a) of the figure. We then
evaluate the function at xl =X(#, u, f, K). This divides the search space
into two intervals, If, Xl] and Ix1 u]; see part (b) of the figure. We now
determine which of these intervals has the lowest B-value. In this case,
there is a tie, which we break arbitrarily in favor of the interval [l, xl]. We
then evaluate the function at x~ =X(f , x l , f , K). Now the search space is
divided into three intervals, [E, x2], Ix2, Xl], Ix1 u]; see part (c) of the

slope = - K - - ~ ' ~ ' ~ / slope = +K / [" ~ / /
~(~,b,f ,K) ,

b
x(~,~,f ,;<)

Fig. 1. Computing the Lipschitzian lower bound for an interval.

JOTA: VOL. 79, NO. t, OCTOBER 1993 16t

(a)

z, = x(Z,~.,f,K)

2Z

(b)

Xt

xe = X (l , x , , f , i I)

(c)

Z z X~ %

~3 = x(~,,~,f.K)
Fig. 2. Shubert's algorithm.

figure. The interval with the lowest B-value is [x~, u], and so we evaluate
the function at x3 = X(Xl , u, f , K). At any point in Shubert's algorithm, the
V's for all the intervals form a piecewise linear function that approximates
f (x) from below. The next point sampled is the minimum of this piecewise
linear approximation. Shubert's algorithm stops when the minimum of the
approximation is within some prespecified tolerance of the current best
solution.

As we have seen, Shubert's algorithm selects an interval for further
search based on a comparison of lower bounds. Each lower bound, in turn,
is the sum of two terms, [f (a) + f (b)] / 2 and - K (b - a) ; see Eq. (5). The
first term is lower (and therefore better, since we are minimizing) when the
function values at the endpoints are low. Thus, this term leads us to select
intervals where previous function evaluations have been good, i.e., it leads
us to do local search. The second term is lower algebraically the bigger is

162 JOTA: VOL. 79, NO. 1, OCTOBER 1993

the interval, i.e., the bigger is b - a. Thus, this term leads us to select
intervals with large amounts of unexplored territory, i.e., it leads us to do
global search. The Lipschitz constant K serves as a relative weight on
global versus local search; the larger K, the higher is the relative emphasis
put on global search.

This way of thinking about Shubert's algorithm highlights one of its
problems. Since the Lipschitz constant must be an upper bound on the rate
of change of the function, it will generally be quite high. In terms of the
above discussion, this means that Shubert's algorithm will place a high
emphasis on global search and, as a result, may exhibit slow convergence. 4
Once the basin of convergence of the optimum is found, the search would
proceed more quickly if K could be reduced, thereby increasing the
emphasis on local search. In practice, however, it is difficult to know when
and how to reduce K. Thus, one must leave K at its initial value and, if this
value is high, one must accept slow convergence as inevitable.

The other problem with Shubert's method is in its initialization phase,
where we evaluate the function at the endpoints f and u. Although this is
easy to do in one dimension, the natural extension to n dimensions is to
evaluate the function at all 2" vertices of the search space. This is the
approach adopted in the multivariate Lipschitzian algorithms of Pinter
(Ref. 4) and Galperin (Ref. 3). Mladineo (Ref. 6) has developed an
extension of Shubert's algorithm that can be initialized by evaluating the
function at a single arbitrary point, but this algorithm is computationally
complex for other reasons. In particular, the selection of new points
involves solving several systems of n linear equations in n + 1 unknowns,
and the number of such systems goes up rapidly with the number of
iterations. For these reasons, the Mladineo algorithm must be modified in
order to be applied in more than two dimensions. In summary, Shubert's
algorithm has two problems: a potential overemphasis on global search,
and the high computational complexity of current multivariate extensions.

3o DIRECT Algorithm in One Dimension

In this section, we modify Shubert's algorithm to alleviate the problems
just discussed. The result of these modifications will be the DmECT algorithm
in one dimension.

4In the extreme case when the Lipschi~ constant is infinity, Shubert's algorithm reduces to a
grid search. To see this note that, when K = o% Eq. (5) implies that the biggest interval is
selected and Eq. (4) implies that this interval is sampled at its midpoint. It follows that, after
1 + 2 k function evaluations, for any k = 1, 2, . . . , the sampled points form a uniform grid over
the interval.

JOTA: VOL. 79, NO. I, OCTOBER 1993 163

The key to making Shubert's algorithm practical in higher dimensions
is, to modify the way the space is partitioned. Instead of evaluating the
function at the endpoints of an interval, we will evaluate it at the center
point. In n dimensions, this means that the algorithm can be initialized by
sampling just one point (the center of the search space) as opposed to all
2 n vertices of the space. Of course, while center-point sampling enables one
to operate in high-dimensional spaces, it does not, by itself, ensure good
performance in such spaces.

The shift from sampling endpoints to sampling center points requires
some accompanying changes. First, the calculation of an interval lower
bound must change. Let [a, b] be an interval with center point c =
(a+b) /2 . Setting x' equal to c in (1), we see that f (x) must satisfy the
inequalities

f (x) >>.f(c) + K (x - c), for x ~< c, (6)

f (x) >~ f (c) - K (x - c), for x ~> c. (7)

tn Fig. 3, these inequalities correspond to the lines with slopes + K
and - K , and the function must lie above the inverted V formed by their
intersection. The lowest value the function can attain occurs at the
endpoints a and b. This lower bound is

lower bound = f (c) - K(b - a)/2. (8)

Note that the lower bound in Eq. (8) only takes into account the function
value at the center of the interval in question. Stronger bounds can some-
times be computed by also considering the function value at the centers of
nearby intervals. Unfortunately, computing such stronger bounds becomes
intractable in higher dimensions; this is why we use the weaker bound in
Eq. (8).

So far, we have said that we will partition the space into intervals
whose center points are evaluated and will select intervals based on the

t

C~ C b

s ~ e : - K

Fig. 3. Computing a lower bound with center-point sampling.

t64 JOTA: VOL. 79, NO. 1, OCTOBER 1 9 9 3

Befcre Division: i

After Division: F-, • r • I •

Fig. 4. Subdividing an interval with center-point sampling.

lower bound given in Eq. (8). To complete our shift toward center-point
sampling, we must specify where to evaluate the function and how to
subdivide the selected interval. In doing this, we must be sure to maintain
the property that each interval is sampled at its center. To maintain this
property, we have adopted the strategy illustrated in Fig. 4: the interval is
divided into thirds, and the function is avaluated at the center points of the
left and right thirds. The original center point simply becomes the center of
a smaller interval.

Center-point sampling takes us one step toward the DmECT algorithm.
To motivate text next step, let us suppose that we have already partitioned
the search space into intervals [a;, bi], i = t , . . . , m, and are in the process
of selecting one of these intervals for further sampling. In Fig. 5, we have
represented each interval in the partition by a dot with horizontal coor-
dinate (b i - ai)/2 and vertical coordinate f(ci). The horizontal coordinate is
the distance from the interval's center to its vertices. It captures the good-
ness of the interval with respect to global search, that is, goodness based
on the amount of unexplored territory in the interval. The vertical coor-
dinate is the value of the function at the interval's center. It captures the
goodness of the interval with respect to local search, that is, goodness
based on known function values. If one passes a line with slope K through
any dot in this diagram, the vertical intercept will be the lower bound for

Fig, 5.

f (c)

• z' f
• ~ ' ~ slope = K

i

~°

~ f(c,) - K[(b,-~,)/2]
(b-~)/2

(b, - ~,)/Z

Graphical interpretation of interval selection.

JOTA: VOL. 79, NO. 1, OCTOBER 1993 I65

the corresponding interval. Hence, the interval with the lowest lower bound
can be found by positioning a line with slope K below the cloud of dots
and shifting it upwards until it first touches a dot. Figure 5 shows how such
an optimal dot (and its corresponding interval) is selected.

The Lipschitz constant, reflected in the slope of the line in Fig. 5,
determines the relative weighting of global versus local search. In standard
methods, this constant is usually high and so tends to overemphasize
global search. But what would happen if we used all possible relative
weightings? This would correspond to identifying the set of intervals that
could be selected using a line with some positive slope. As shown in Fig. 6,
these intervals are represented by the dots on the lower right part of the
convex hull of the cloud of dots. The basic idea of DIRECT is tO select (and
sample within) all of these intervals during an iteration. More precisely, we
will sample all "potentially optimal" intervals as defined below:

Definition 3.1. Suppose that we have partitioned the interval [d, u]
into intervals [ai, bi] with midpoints % for i= 1 , . . . , m. Let ~ > 0 be a
positive constant, and the fmin be the current best function value. Interval
j is said to be potentially optimal if there exists some rate-of-change
constant R > 0 such that

f(cfl -/~'[(bj - aj)/2] <~f(ci) - / ~ [(b i - af)/2], for all i = 1, . . . , m,

f(c:) - RE(hi- aj)/2] ~fmin - - 8 Ifmid.

The first condition in the definition forces the interval to be on the
lower right of the convex hull of the dots. The second condition insists that
the lower bound for the interval, based on the rate-of-change constant ~7,
exceed the current best solution by a nontrivial amount. For example, if

- /

/ / /

• •

• " o Pot°ot,a,,y oo,lmoi
m Non-Opt imal

Fig. 6. Set of potentially optimal intervals.

166 JOTA: VOL. 79, NO. l, OCTOBER 1993

= 0.01, then the lower bound for the interval would have to exceed the
current best solution by more than 1%. This second condition is needed to
prevent the algorithm from becoming too local in its orientation, wasting
precious function evaluations in pursuit of extremely small improvements;
in terms of Fig. 6, it implies that some of the smaller intervals might not be
selected. Later, we will show results suggesting that DIRECT is fairly insen-
sitive to the setting of e, providing good results for values ranging from
10 -3 to 10 7. Note that the tilde in R is used to emphasize that R is just
a rate-of-change constant and not a Lipschitz constant in the normal sense.

The one-dimensional DIRECT algorithm is essentially Shubert's algo-
rithm modified to use center-point sampling and to sample all potentially
optimal intervals during an iteration. If a Lipschitz constant were known,
we could also use Shubert's stopping criterion; that is, we could compute
a lower bound on the function and stop searching when this bound is
within some tolerance of our current best so lu t ion /However , we prefer to
assume that a Lipschitz constant is not known. Hence, we will stop using
a prespeclfied hmlt T on the number of iterations. A formal statement of
the one-dimensional OIRECT algorithm appears below.

Univariate DIRECT Algorithm.

Step 1. Set r e = l , [a l , b l] = [E , u] , c l = (a 1 + b l) / 2 , and evaluate
f (c l) . Set f m i ~ = f (c l) . Let t = O (iteration counter).

Step 2. Identify the set S of potentially optimal intervals.

Step 3. Select any interval j ~ S.

Step 4. Let 8 = (by- aj)/3, and set Cm + 1 = Cj-- 8 and Cm + 2 = Cj + 8.

Evaluate f (c ,~ + 1) and f (c m + 2) and update fmi~"

Step 5. In the partition, add the left and right subintervals

[am+ 1 , bin+ 1"] : [a j , a jJ i - 8] , center point cm+ 1 ,

[am+2, bm+2] = [as+ 28, bj], center point Cm+2.

Then modify interval j to be the center subinterval by setting

[a s, bj] = [aj + 8, a j + 283.

Finally, set m = m + 2.

Step 6. Set S = S - {j}. If S ~ ~ , go to Step 3.

5If a Lipschitz constant K were actually known, one would also modify Definition 3.1 to insist
that K" <~ K.

JOTA: VOL. 79, NO. 1, OCTOBER 1993 167

Step 7. Set t = t + 1. If t = T , stop; the iteration limit has been
reached. Otherwise, go to Step 2.

The order in which the potentially optimal intervals are selected in
Step 3 is irrelevant as long as one selects them all. All results reported in
this paper will reflect complete iterations; that is, they will reflect values of
m and fmin at Step 7.

Although we have not described how to identify the set of potentially
optimal intervals, it can be done quite efficiently. For example, an algo-
rithm known as Graham's scan can find the convex hull of a set of m
arbitrary points in O(m log2 m) time (Ref. 7). If the points are already
sorted by their abscissas, it requires only O(m) time. We can do better than
this, however, because the points in Fig. 6 are not arbitrary. In particular,
since DIRECT always divides intervals into thirds, the only possible interval
lengths are (u - d) 3 k, for k = 0 , 1, 2 , This means that many of the
points in Fig. 5 will have the same abscissa. As a result, if we keep the
intervals sorted by function value within groups of intervals with the same
length, then we can identify the convex hull in O(m') time, where m' is the
number of distinct interval lengths (abscissas in Fig. 6).

4. DIRECT Algorithm in Several Dimensions

In this section, we generalize the one-dimensional DIRECT algorithm to
several dimensions. Without loss of generality, we will assume that every
variable has a lower bound of zero and an upper bound of one (the scale
can always be normalized so that this is true). Thus, the search space will
be the n-dimensional unit hypercube. As the algorithm proceeds, this space
will be partitioned into hyperrectangles, each with a sampled point at its
center. The main issue in extending DIRECT to several dimensions concerns
how to divide these hyperrectangles. To keep things simple, we will start
our discussion by focusing on the division of hypercubes. Once this is done,
we then extend the method to hyperrectangles.

An easy way to divide a hypercube would be to select one dimension
arbitrarily and split the hypercube into thirds along this dimension. But
selecting a dimension arbitrarily is not conceptually attractive. To avoid
such arbitrariness, we have constructed the following approach. We start
by sampling the point c + 6ei, i = 1 n, where c is the center point of
the hypercube, 3 is one-third the side length of the hypercube, and ei is the
ith unit vector (i.e., a vector with a one in the ith position and zeros
elsewhere). In the two-dimensional example of Fig. 7, this translates into
sampling above, below, to the left, and to the right of the center point;

168 JOTA: VOL. 79, NO. 1, OCTOBER 1993

these newly sampled points are shown as open dots with numbers beside
them indicating the function's value. By sampling along all dimensions,
we have avoided selecting any dimension arbitrarily. But we now must
resolve another issue: how are we to divide the hypercube so that each
subrectangle has a sampled point at its center?

Figure 7 shows two possible ways to do this for the case n=2 .
In part (a), we first divide the square into thirds along the horizontal
dimension and then divide the center rectangle (the one with e) into thirds
along the vertical dimension. In part (b), the order is reversed. Both of
these division strategies partition the hypercube into subrectangles with
sampled points at their centers.

To decide which division order to use, notice that, if we first split on
dimension i, then the two points c +__ 6e; will be at the centers of the biggest
subrectangles. For example, in part (a) of Fig. 7, we first divide on dimen-
sion 1; as a result, the points with function values 5 and 8 become the
centers of the largest subrectangles. This observation leads to the following
question: do we want the biggest rectangles to contain the points with the
best or the worst function values? The strategy that we have adopted is to
make the biggest rectangles contain the best function values. This strategy
increases the attractiveness of searching near points with good function
values (since bigger rectangles are preferred for sampling, everything else
equal). In our experience, the increased emphasis on local search speeds up
convergence without sacrificing the global properties of the algorithm,
which are ensured by the method of selecting rectangles discussed later.

Sample 06 /

05 • 08

O2

Divide on Horizontal

og •
O2

Divide on Vertical

O~ 08
05 •

Divide on Vertical Divide on Horizontal

1 1 05 • ~ • 0 8

- E

Fig. 7. Sampling and dividing a square in the DIRECT algorithm.

(5)

JOTA: VOL. 79, NO, 1, OCTOBER 1993 !69

Fig. 8. Dividing a rectangle in the DIRECT algorithm.

More precisely, we have adopted the following rule for subdividing a
hypercube. Let

wi = min{f(c + 5ei), f (e - 6e,)}

be the best of the function values sampled along dimension i. Start by
splitting along the dimension with the smallest w value. Once this is done,
split the rectangle containing c into thirds along the dimension with the
next smallest w value. Continue in this way until we have split on all
dimensions. This splitting rule would select part (b) of Fig. 7.

Once the initial hypercube has been divided, some of the subregions
will be rectangular. In dividing such rectangles, we only consider the long
dimensions. For example, the three-dimensional rectangle shown in Fig. 8
would be divided along the horizontal and vertical dimensions, but not the
shorter depth dimension. By dividing only along the long dimensions, we
ensure that the rectangles shrink on every dimension; as we see later, this
is essential for proving convergence. A formal description of the rectangle
division procedure is given below. Note that this description also covers
hypercubes as a special case.

Procedure for Dividing Rectangles.

Step 1. Identify the set iT of dimensions with the maximum side
length. Let 6 equal one-third of this maximum side length.

Step 2. Sample the function at the points c _+ 6e i for all i ~ I, where c
is the center of the rectangle and e i is the ith unit vector.

Step 3. Divide the rectangle containing c is into thirds along the
dimensions in I, starting with the dimension with the lowest
value of

wi = min{f(c + 6ei), f (c -- 6e/) },

and continuing to the dimension with the highest w~.

170 JOTA: VOL. 79, NO. 1, OCTOBER 1993

The procedure for identifying the set of potentially optimal rectangles
in the same as that in one dimension. For each rectangle, we will know the
function value at the center point and the distance d from the center point
to the vertices. We can now form a diagram like that in Fig. 6, using the
distance d for the horizontal axis, and identify the set of potentially optimal
intervals as before. Formally, the set of potentially optimal intervals is
given by Definition 4.1 below.

Definition 4,1. Suppose that we have a partition of the unit hyper-
cube into m hyperrectangles. Let ei denote the center point of the ith
hyperrectangle, and let d,. denote the distance from the center point to the
vertices. Let e > 0 be a positive constant. A hyperrectangle j is said to be
potentially optimal if there exists some R > 0 such that

f (c j) - K d j < ~ f (c i) - K d ~ , for all i=1 m,

f(c/) - ~dj ~ fmi. - e [fmi.I.

We now have all the ingredients for the DIRECT algorithm in several
dimensions. We initialize the search by sampling at the center of the unit
hypercube. Each iteration then begins by identifying the set of potentially
optimal hyperrectangles. These hyperrectangles are then sampled and
subdivided as just described. The process continues until a prespecified
iteration limit is reached (one could also stop after a prespecified number
of function evaluations). A formal statement of the multivariate DIRECT
algorithm is given below.

Multivariate DIRECT Algorithm.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Normalize the search space to be the unit hypercube. Let e~
be the centerpoint of this hypercube and evaluate f(e,) . Set
fr, i ,= f (e l) , m = 1, and t = 0 (iteration counter).

Identify the set S of potentially optimal rectangles.

Select any rectangle j ~ S.

Using the procedure described earlier, determine where to
sample within rectangle j and how to divide the rectangle
into subrectangles. Update fmin and set m = m + Am, where
Am is the number of new points sampled.

Set S = S - { j } . I f S ¢ ~ g o t o S t e p 3 .

JOTA: VOL. 79, NO. 1, OCTOBER 1993 171

Star~

I t e ra t ion 1

Identify PotentiMly
Optimal Rectangles

iiiiiiiiiiiiiii!iiiiiiiiiiii!i!ii!ii

iiiiiii!ii!i!!!ii ii ii:i!i!i!ii!iil
iiiiii i i iii iiii!iiiiiiiiiiii!!!i

Sample ge Divide
These Reeta,'~gles

I
- - •

k

Start

I t e r a t i o n 2

Identify Potentially
Optimal Rectangles

e

L~i;iiiiS~)iSii?iiii ?iiiiiS;i

Sample & Divide
These Rectangles

~-- - -L

i S • o

Iteration 3

Start

• •

Identify Potentially
Optimal Rectangles

i i

Sample & Divide
These Rectangles

Fig. 9. Three iterations of the DmrCT algorithm on Branin's function.

172 JOTA: VOL. 79, NO. 1, OCTOBER 1993

Step 6. Set t = t + 1. If t = T, stop; the iteration limit has been
reached. Otherwise, go to Step 2.

To provide a more intuitive feeling for how the algorithm works,
Fig. 9 shows the first three iterations of the algorithm on the two-dimen-
sional Branin test function (Ref. 8) using e=0.0001. For each iteration,
column 1 shows the status of the partition at the start of the iteration,
column 2 shows the set of potentially optimal rectangles (shaded), and
column 3 shows how these rectangles are sampled and subdivided.
Figure 10(a) shows a scatter plot of the sampled points after 16 iterations
and 195 function evaluations. At this point, the best solution from DIRECT
is within 0.01% of the global optimum. The status of the search after 45
iterations and 1003 function evaluations is shown in Fig. 10(b). Branin's
function has three global optima, and the sampled points clearly cluster
around them.

In our description of the algorithm so far, it would appear necessary
to store the center point and side lengths of each rectangle. But one need
not store all this information. Instead, one can store information that
makes it possible to reconstruct the center points and side lengths when
needed. Each time a rectangle is divided, the subrectangles can be con-
sidered child rectangles of the original parent rectangle. What we actually
store is information on this search tree, such as parent nodes, depth in the
tree, child type (left or right), and so on. In this way, the storage
requirements of DIRECT become independent of the number of dimensions.
However, the storage requirements do increase with the number of function
evaluations (i.e., with the number of rectangles being stored).

(a) (b)

• o

o • i ii i i i i i i
• , . • o

* . ° o ~

• t ° . . * • •

• o o • * •

. , • o o • o . • m ~ • • • o

• • ° o . o • • • . . m * . * • o o • • • •

: .iii ii.i. i!i|
Fig. 10. Scatter plots for Branin's function after 195 and 1003 evaluations.

JOTA: VOL 79, NO. 1, OCTOBER 1993 173

5. Convergence

DIRECT is guaranteed to converge to the globally optimal function
value if the objective function is continuous--or at least continuous in the
neighborhood of a global optimum. This follows from the fact that, as the
number of iterations goes to infinity, the set of points sampled by DIRECT
form a dense subset of the unit hypercube. That is, given any point x in the
unit hypercube and any 6 > 0, DIRECT will eventually sample a 15oint within
a distance 6 of x.

The reason why the iterates of DmECT are dense is as follows. Recall
that the partition is initialized with just one rectangle, the unit hypercube,
for which every side has a length of 1. Since new rectangles are formed by
dividing existing ones into thirds on various dimensions, the only possible
side lengths for a rectangle are 3-k for k = 0, 1, 2 Moreover, since a
rectangle is always divided on its largest side, no side of length 3-~k+ 1) can
be divided until all of those of length 3 -e have been divided. It follows
that, after r divisions, the rectangle will have j = rood0; n) sides of length
3 -tk+~) and n - j sides of length 3 -k, where k = (r - j) / n . The distance
from the center to the vertices is therefore given by

d = [j3 -2(k+ 1~ + (n - j) 3 -2k] °'5/2. (9)

As the number of divisions approaches infinity, the center-to-vertex
distance approaches zero.

Now suppose that we are at the start of iteration t. Each rectangle in
the partition will have been divided a certain number of times. Let r, be the
fewest number of divisions undergone by any rectangle. This rectangle
would then have the largest center-to-vertex distance. We claim that
l i m t ~ rt=oo; that is, the number of divisions of every rectangle
approaches infinity. This is easily proved by contradiction. If the timt_~ oo r,
is not infinity, then there must exist some iteration t' after which r t never.
increases; that is, limt_~ ~ rt = r,,. Now at the end of iteration t', there will
be a finite number of rectangles which have been divided rr times; let this
number be N. All these rectangles will be tied for the largest center-to-
vertex distance, but they will differ with respect to the value of the function
at the center point. Let rectangle j be the one with the best function value
at the center point. In the next iteration, rectangle j will be potentially
optimal because the two conditions of Definition4.1 are satisfied for
K > m a x { K 1, K2}, where

K1 = If(e/) --fmin + e [fmin[]/dj, (10)

K2= max [f(cj)--f(ci)]/(4--C). (11)
1 4 i ~ m

174 JOTA: VOL. 79, NO. 1, OCTOBER 1993

But if rectangle j is potentially optimal, it will be subdivided. This will
leave N - 1 rectangles that have been divided only r c times. Clearly, by
iteration t = t ' + N, all of the original N rectangles will have been divided,
implying that rt >~ rc + 1. But this contradicts our assumption that r t never
increases above re. This contradiction proves that l imt~ ~ r t = ~ . From
this, it follows that the maximum center-to-vertex distance must approach
zero as t ~ ~ . Thus, given any 6 > 0, there will exist some number of
iterations T such that, if t > T, then every rectangle has a center-to-vertex
distance less than 6. This, in turn, implies that every point in the hypercube
will be within a distance 6 of some sampled point.

Because the points sampled by DIRECT form a dense subset of the
hypercube, DIRECT will converge to the globally optimal function value as
long as the function is continuous in the neighborhood of the global mini-
mum. Since any function satisfying a Lipschitz condition is continuous,
DIRECT will also converge for any function satisfying a Lipschitz condition,
even though the Lipschitz constant may not be known.

6. Performance Comparisons

We have applied DIRECT to nine standard test functions. The first seven
were proposed by Dixon and Szego (Ref. 8) as benchmarks for comparing
global search methods. The last two are taken from the literature on
tunneling algorithms (Ref. 9). Table 1 gives the number of dimensions, local
minima, and global minima for each of these functions. All of the test
functions are differentiable.

Following Dixon and Szego (Ref. 8), we have compared DIRECT to
existing algorithms based on the number of function evaluations required

Table 1. Key characteristics of the test functions.
iiii i i i iiiiiii i i i i i

Number of Number of Number of
Test function Abbreviation dimensions local minima global minima

Shekel 5 $5 4 5 1
Shekel 7 $7 4 7 1
Shekel 10 S10 4 10 1
Hartman 3 H3 3 4 1
Hartman 6 H6 6 4 1
Branin RCOS BR 2 3 3
Goldstein and Price GP 2 4 1
Six-Hump Camel C6 2 6 2
Two-Dimensional Shubert SHU 2 760 18

i i i i i i i i i i i

JOTA: VOL. 79, NO. 1, OCTOBER 1993 175

for convergence as well as the number of units of standard time required,
where one unit of standard time corresponds to 1000 evaluations of the
Shekel 5 test function at the point (4, 4, 4, 4).

While this may seem like an objective standard, it has some serious
problems. First, Dixon and Szego established no definition of convergence,
allowing this to be defined by the originators of the methods as they saw
fit. Second, no standard was proposed for dealing with stochastic algo-
rithms. It is entirely possible for a stochastic algorithm to converge on
some runs but not on others. In these cases, it becomes unclear what one
should report as the number of function evaluations required for con-
vergence. Finally, many algorithms have several algorithmic parameters
and their performance can be quite sensitive to how these parameters are
set. If a large number of runs are spent fine-tuning these parameters, then
the performance of the algorithm with the fine-tuned parameters does not
truly represent the full effort involved in optimizing the function.

Other methods for comparing optimization algorithms have been
proposed. For example, Stuckman and Eason (Ref. 10) have compared
several global search algorithms based on percent error after 20, 50, 100,
200, 500, and 1000 function evaluations. Unfortunately, results of this sort
are not available for many algorithms. 6

To use the Dixon/Szego comparison method, we must define what we
mean by convergence for DIRECT. Since all the test functions have known
global optima, a natural choice is to define convergence in terms of percent
error from the globally optimal function value. If we let fg~oba~ denote this
globally optimal function value and let fmin denote the best function value
at some point in the search, then the percent error is

percent error = 100(fmin - f g l o b a l) / I f g l o b a l] • (12)

We report the number of function evaluations and standard CPU times
required to achieve less than 1.0 and 0.01 percent errors. For existing algo-
rithms, we report results based on the definition of convergence used by
their authors. In all computer runs, the parameter ~ was set to 0.0001.

Tables 2 and 3 summarize these performance comparisons with respect
to number of function evaluations and computation time, respectively. The
first 11 algorithms all appeared in the 1978 anthology edited by Dixon and
Szego (Ref. 8) and therefore are somewhat old. The algorithm by Belisle et
al. (Ref. 11) is of the simulated annealing type, while those by Boender et
al. (Ref. 12) and Snyman and Fatti (Ref. 13) are variations on the multi-
start method. The Kostrowicki and Piela algorithm (Ref. 14) uses a local

6On request, we will provide full iteration histories for DIRECT on all the test functions
(contact D. R. Jones).

176 JOTA: VOL. 79, NO. 1, OCTOBER 1993

optimizer to minimize a smoothed version of the function, with the amount
of smoothing being reduced as the algorithm proceeds. Yao's algorithm
(Ref. 9) alternates between a local optimization phase and a tunneling
phase that attempts to move from the current local minimum into the
basin of convergence of a better one. The Perttunen (Ref. 15) and
Perttunen/Stuckman (Ref. 16) algorithms are of the Bayesian sampling
variety; during each iteration, they sample at a point calculated to have the
highest probability of improving upon the current best solution.

To provide some overall perspective, Table 4 summarizes the results
as follows. For any test function where both DIRECT and a competing
algorithm were applied, we say that DIRECT wins if it converged in fewer
function evaluations and loses otherwise. If a competing algorithm
converged to a local, it is considered a loss. Similar results are shown for

Table 2. Number of function evaluations in various methods compared to DIRECT.

Test functions

Method Reference $5 $7 S10 H3 H6 GP BR C6 SHU

Bremrnerman 8 (a) (a) (a) (a} (a) (a) 250 (b) (b)
Mod Bremrnerman 8 (a) (a) (a) (a) 515 300 160 (b) (b)
Zilinskas 8 (a) (a) (a) 8641 (b) (b) 5129 (b) (b)
Gomulka-Branin 8 5500 5020 4860 (b) (b) (b) (h) (b) (b)
T6rn 8 3679 3606 3874 2584 3447 2499 1558 (b) (b)
Gomulka-T6rn 8 6654 6084 6144 (b) (b) (b) (b) (b) (b)
Gomulka-V.M. 8 7085 6684 7352 676611125 1495 1318 (b) (b)
Price 8 3800 4900 4400 2400 7600 2500 1800 (b) (b)
Fagiuoli 8 2514 2519 2518 513 2916 158 1600 (b) (b)
DeBiase-Frontini 8 620 788 1160 732 807 378 587 (b) (b)
Mockus 8 1174 1279 1209 513 1232 362 189 (b) (b)
Belisleet al. (c) 11 (b) (b) (b) 339 302 4728 1846 (b) (b)
Boenderet al. 12 567 624 755 235 462 398 235 (b) (b)
Snyman-Fatti 13 845 799 920 365 517 474 (b) 178 (b)
Kostrowicki-Piela 14 12000 12000 12000 200 200 120 (b) 120 (b)
Yao 9 (b) (b) (b) (b) (b) (b) (b) 1132 <6000
Perttunen (d) 15 516 371 250 264 (b) 82 97 54 t97
Perttunen-Stuckman (d) 16 1•9 109 109 140 175 113 109 96 (a)

DIRECT, error < 1 % 103 97 97 83 213 101 63 113 2883
DIRECT, error <0.01% 155 145 145 199 571 191 195 285 2967

(a) Method converged to a local minimum.
(b) Method not applied.
(c) Average evaluations when converged, For H6, converged only 70% of time.
(d) Convergence defined as obtaining <0.01 percent error.

JOTA: VOL. 79, NO. 1, OCTOBER 1993 177

standardized computation time. All these comparisons use the strict defini-
tion of convergence for DmECT (<0.01% error).

The results of these comparisons show DmECT to be very competitive
with existing algorithms. In terms of function evaluations required for
convergence, Dm~CT wins in 50% or more of the comparisons against
every competing algorithm except Perttunen and Perttunen-Stuckman. In
terms of computation time, t)mECT wins in over 50 % of the comparisons
against every algorithm except Snyman-Fatti and Kostrowicki-Piela.

Many of the close competitors to DmECT have features that make them
less attractive in practical settings. For example, the Perttunen-Stuckman
method is known to get fairly close to the optimum quickly but to
take much more time to get as close as 0.01% error. To obtain results

T a b l e 3. N o r m a l i z e d c o m p u t a t i o n in various methods compared to DIRECT.

Test functions

Method Reference $5 $7 S10 H3 H6 GP BR C6 SHU

Bremmerman 8 (a) (a) (a) (a) (a) (a) 1.00 (b) (b)
ModBremmerman 8 (a) (a) (a) (a) 3.00 0,70 0.50 (b) (b)
Zilinskas 8 (a) (a) (a) 175.00 (b) (b) 80.00 (b) (b)
Gomulka-Branin 8 9.00 8.50 9,50 (b) (b) (b) (b) (b) (b)
Yrrn 8 10.00 13,00 15.00 8.00 16.00 4`00 4.00 (b) (b)
Gomulka-Trrn 8 17.00 15.00 20.00 (b) (b) (b) (b) (b) (b)
Gomulka-V.M. 8 19,00 23.00 23.00 17.00 48.00 2.00 3.00 (b) (b)
Price 8 14.00 20.00 20.00 8.00 46,00 3.00 4.00 (b) (b)
Fagiuoli 8 7.00 9.00 13.00 5.00 100.00 0.70 5.00 (b) (b)
De Biase-Frontini 8 23.00 20.00 30.00 16,00 21.00 15.00 14.00 (b) (b)
Mockus 8 (e) (c) (c~ (c) (c) (c) (c) (b) (b)
Belisleet al. 11 (b) (b) (b) 0.88 0.86 9.80 3.40 (b) (b)
Boenderet al, 12 3.50 4.50 7.00 1.70 4.30 1,50 1.00 (b) (b)
Snyman-Fatfi 13 1,10 1.30 2.00 0.60 L30 0,20 (b) 0.I0 (b)
Kostrowicki-Piela 14 15.00 19.00 26,00 0.30 0.50 0.04 (b) 0,05 (b)
Yao 9 (b) (b) (b) (b) (b) (b) (b) (c) (c)
Perttunen (d) I5 9259.20 4769.t0 2272.00 434`30 (h) 10.11 13.37 4,80 39,06
Perttunen-

Stuckman (d) 16 20.59 20,54 20.61 18.32 34.32 I6.36 16.39 15.77 (a)

DIRECT, error < 1 % 0.32 0.33 0.37 0.29 0.70 0,29 0.t9 0.28 22,95
DmEcT, error <0.01% 0.68 0,69 0.75 0.87 2.24 0.67 0.70 0.90 23.50

(a) Method converged to a local minimum.
(b) Method not applied.
(c) Computation time not reported.
(d) Convergence defined as obtaining <0.01 percent error.

lllllllllllll !ml ' l l l llll ! l I

178 JOTA: VOL. 79, NO. 1, OCTOBER 1993

comparable to DIRECT, we therefore ran the Per t tunen-Stuckman method
for 100 function evaluations and, if necessary, used a local optimizer to
fine-tune the solution to 0.01% error. The local optimizer was the IMSL
subroutine D B C O N F , a quasi-Newton method using numerical
derivatives; the number of function evaluations in Table 2 includes those
required to compute these derivatives. While using 100 global evaluations
worked well on these test problems, the appropriate number of global
evaluations is likely to be problem dependent. As Table 2 shows, a limit of
100 global evaluations was inadequate for the two-dimensional Shubert
function. The Shubert function can be successfully optimized using 200
global evaluations but, if 200 evaluations had been used for all the test
problems, DIRECT would have won in 6 out of 9 comparisons.

Among the other close competitors, Perttunen's method is extremely
C P U intensive (in terms of C P U time, DIRECT beats Perttunen's method on
every test function). The multistart algorithms of Boender et al. and
Snyman and Fatti require the objective function to be differentiable and
may require multiple runs. The diffusion equation method of Kostrowicki
and Piela requies, for efficiency, the ability to obtain a closed-form formula

Table 4. Summary comparisons of DIRECT vs. competing algorithms.

Function evaluations CPU time

Algorithm Reference Win-loss Win-loss

Bremmerman 8 7-0 7-0
Mod Bremmerman 8 5-2 6-1
Zilinskas 8 5-0 5-0
Gomulka-Branin 8 3-0 3-0
T6rn 8 7-0 7-0
Gomulka-T6rn 8 3-0 3-0
Gomulka-V.M. 8 7-0 7-0
Price 8 7-0 7-0
Fagiuoli 8 6-1 7-0
De Biase-Frontini 8 7-0 7-0
Mockus 8 6-1 (a)
Belisle et al. 11 3-1 3-1
Boender et al. 12 6--1 7-0
Snyman-Fatti 13 5-2 3-4
Kostrowicki-Piela 14 4-3 3-4
Yao 9 2-0 (a)
Perttunen 15 4-4 8-0
Perttunen-Stuckman 16 1-7 8-0

(a) Computation times not reported.

JOTA: VOL. 79, NO. 1, OCTOBER 1993 179

Table 5. Function evaluations required for convergence.
,ml i i

Test functions

e $5 S7 S10 H3 H6 GP BR C6 SHU

0.01
0.001
0.0001(a)
0.00001
0.000001
0.0000001

3749 374t 3741 3817 > 10000 191 787 521 1623
155 145 145 533 985 191 259 285 I887
t55 145 145 199 571 191 195 285 2967
155 145 145 199 571 191 195 285 3959
155 145 145 199 571 191 195 285 4899
155 145 145 199 571 191 195 285 5747

(a) This is the value of e used in comparisons of DII(ECT to other algorithms.

for a particular integral (this was not possible for $5, $7, and S10, which
accounts for the high number of function evaluations on those functions).

Table 5 explores the sensitivity of DIRECT to the parameter e. For each
of the test functions, we report the number of function evaluations until
convergence for values of e between !0 2 and 10 -7, Convergence was
defined as achieving less than 0.01% error. Given this definition of
convergence, it is most natural to set e equal to 0.0001. This tells DIRECT
to ignore rectangles whose lower bound (using the rate-of-change constant

that makes them potentially optimal) suggests that further search in the
rectangle will not improve upon the current best solution by 0.01%.
Smaller values of e make the algorithm more local and tend to increase the
number of function evaluations. But, as the table shows, e can be made
several orders of magnitude smaller than its natural value without
drastically affecting the results (test function SHU is an exception).

It is risky, however, to increase e above the value implied by the
definition of convergence. Even if the algorithm finds the basin of
convergence of the global optimum, large values of epsilon can prevent
DIRECT from refining its solution to the desired accuracy. The search
becomes very global and lengthy, as indicated by the line in Table 5 for
e = 0.0t. In general, we expect that setting e equal to the desired solution
accuracy will yield good results.

7. Conclusions

For an algorithm to be truly global, some effort must be allocated to
what we have called global search--search done primarily to ensure that
potentially good parts of the space are not overlooked. On the other hand,

180 JOTA: VOL. 79, NO. 1, OCTOBER 1993

to achieve efficiency, some effort must also be placed on local search--
search done in the area of the current best solution(s). Most existing algo-
rithms strike a balance between local and global search using one of two
approaches. The first is to start with a large emphasis on global search and
then shift the emphasis towards local search as the algorithm proceeds.
This is the approach followed by simulated annealing (Ref. 11) and the
diffusion equation method (Ref. 14). The second approach is to combine a
local optimization technique with some other procedure that gives a global
aspect to the search. This is the approach adopted by multistart and
tunneling algorithms.

DIRECT introduces a third approach to balancing global and local
search: do a little of both on every iteration (recall that an iteration in
DmECT consists of several function evaluations). As we have seen, this is
accomplished by selecting all those rectangles that would have the lowest
lower bound for some rate-of-change constant: small constants select
rectangles good for local search, while large constants select those good for
global search.

An advantage of this third approach is that it leads to an algorithm
with few parameters. In contrast, those algorithms which shift from global
to local search usually have parameters that specify the rate at which
this shift is accomplished (e.g., the temperature schedule in simulated
annealing). Similarly, methods which combine local optimizers with global
procedures often have several parameters which control how the global
procedures operate. For example, the multistart method of Boender et al.
requires one to specify how many random points to evaluate and what
fraction of these should be followed up with the local optimizer. Sometimes
algorithms are sensitive to such parameters and a good deal of experimen-
tation is required before a satisfactory result is obtained. As we have seen,
DIRECT has only one parameter and appears to be fairly insensitive to how
it is set.

In summary, practical use of Lipschitzian algorithms has long been
impeded by the need to specify a Lipschitz constant. DmECT eliminates
this requirement by carrying out simultaneous searches with all possible
Lipschitz constants. The algorithm can operate in high-dimensional spaces
because it uses an especially easy-to-manage partition of the space into
hyperrectangles whose center points are sampled. The algorithm requires
no derivatives and, because it is deterministic, no multiple runs. Parameter
fine-tuning is minimized because there is only one parameter which is easy
to set. Results for standard test functions suggests that, for problems up to
six dimensions, DIRECT is an extremely effective global optimizer that
requires relatively few function evaluations.

JOTA: VOL. 79, NO. l, OCTOBER t993 181

References

l. STUCKMAN, B., CARE, M., and STUCKMAN, P.~ System Optimization Using
Experimental Evaluation of Design Performance, Engineering Optimization,
Vol. 16, pp. 275-289, t990.

2. SHUBERT, B., A Sequential Method Seeking the Global Maximum of a Function,
SIAM Journal on Numerical Analysis, VoL 9, pp. 379-388, 1972.

3. GALPEmN, E., The Cubic Algorithm, Journal of Mathematical Analysis and
Applications, Vol. 112, pp. 635-640, 1985.

4. PINTER, J., Globally Convergent Methods for n-Dimensional Multiextremal
Optimization, Optimization, Vol. 17, pp. 187-202, i986.

5. HORST, R., and TuY, H., On the Convergence of Global Methods in Multi-
extremal Optimization, Journal of Optimization Theory and Applications,
Vol. 54, pp, 253-271, 1987.

6. MLADINEO, R., An Algorithm for Finding the Global Maximum of a Multimoda~
Multivariate Function, Mathematical Programming, Vol. 34, pp. 188-209, 1986.

7. PREPARATA, F., and SHAMOS, M., Computational Geometry." An Introduction,
Springer-Verlag, New York, New York, 1985.

8. DIXON, L., and SZEGO, G., The Global Optimization Problem: An Introduction,
Toward Global Optimization 2, Edited by L. Dixon and G. Szego, North-
Holland, New York, New York, pp. 1-15, 1978.

9. YAO, Y,, Dynamic Tunneling Algorithm for Global Optimization, IEEE Trans-
actions on Systems, Man, and Cybernetics, Vol. 19, pp. 1222-1230, 1989.

10. STUCKMAN, B., and EASON, E., A Comparison of Bayesian Sampling Global
Optimization Techniques, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 22, pp. 1024-1032, 1992.

| t. BELISLE, C., ROMEIJN, H., and SM1TH, R., Hide-and-Seek: A Simulated Anneal-
ing Algorithm .[or Global Optimization, Technical Report 90-25, Department of
Industrial and Operations Engineering, University of Michigan, 1990.

12. BOENDER, C., et al., A Stochastic Method for Global Optimization, Mathemati-
cal Programming, Vol. 22, pp. 125-140, 1982.

13. SNVMAN, J., and FATTI, L., A Multistart Global Minimization Algorithm
with Dynamic Search Trajectories, Journal of Optimization Theory and
Applications, Vol. 54, pp. 121-141, 1987.

14. KOSTROWICKI, J., and PIELA, L., Diffusion Equation Method of Global Mini-
mization: Performance on Standard Test Functions, Journal of Optimization
Theory and Applications, Vol. 69, pp. 269--284, 1991.

15. PERTTUNEN, C., Global Optimization Using Nonparametric Statistics, University
of Louisville, PhD Thesis, t990.

16. PERTTUNEN, C., and STUCKMAN, B., The Rank Transformation Applied to a
Multiunivariate Method of Global Optimization, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 20, pp. 1216-1220, 1990.

