Ecole Centrale Paris Numerical Optimization and Applications By Tahar Z. Boulmezaoud and Laurent Dumas 2011

Gradient conjugate method

Consider a quadratic function of the form

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T A \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + c, \tag{1}$$

where A is symmetric definite positive matrix, \boldsymbol{x} and \boldsymbol{b} are column vectors and c a constant. In the sequel, when there is no confusion, we denote by \mathbb{R}^n the space of all the colomun vectors of the form $(x_1, ..., x_n)^T$, $x_i \in \mathbb{R}$ for $1 \leq i \leq n$.

The *Gradient conjugate* method consists to start from an arbitrary \boldsymbol{x}_0 , and then construct a sequence of directions $(\boldsymbol{d}_k)_{k\geq 0}$ and points $(\boldsymbol{x}_k)_{k\geq 0}$ as follows

- $\mathbf{d}_0 = -\nabla f(\mathbf{x}_0)$,
- For $k \geq 0$, $\boldsymbol{x}_{k+1} = \boldsymbol{x}_0 + \boldsymbol{y}_k$ where \boldsymbol{y}_k is solution of the optimization problem

$$\min_{\boldsymbol{y} \in W_k} f(\boldsymbol{x}_0 + \boldsymbol{y}) \text{ where } W_k = \operatorname{span}\{\boldsymbol{d}_0, ..., \boldsymbol{d}_k\}.$$
 (2)

• For $k \geq 0$, \boldsymbol{d}_k is of the form

$$oldsymbol{d}_{k+1} = -
abla f(oldsymbol{x}_{k+1}) + \sum_{i=0}^k \mu_i oldsymbol{d}_i,$$

where the coefficients $\mu_0, ..., \mu_k$ are chosen such that \boldsymbol{d}_{k+1} are \boldsymbol{d}_i and A-orthogonal (or *conjugate*) for any $i \leq k$, that is

$$\boldsymbol{d}_{k+1}^T A \boldsymbol{d}_i = 0.$$

We set

$$\boldsymbol{r}_k = -\nabla f(\boldsymbol{x}_k) \text{ for } k \geq 0.$$

- 1. Compute the gradient and the hessian matrix of f.
- 2. Is-it a convex function?
- 3. Find the minimum of f on \mathbb{R}^n . Is-it easy to compute?
- 4. Write the optimality conditions for the problem (2).
- 5. Show that

$$\boldsymbol{r}_{k+1}^T \boldsymbol{d}_i = 0 \text{ for any } i \le k.$$
 (3)

- 6. Deduce that $\boldsymbol{r}_{k+1} \in W_k^{\perp}$ for any $k \geq 0$.
- 7. Show that $W_k = \text{span}\{\boldsymbol{r}_0,...,\boldsymbol{r}_k\}$ for any $k \geq 0$.
- 8. Deduce also that
 - (a) if $\mathbf{r}_k = 0$ for some $k \geq 0$, then $\mathbf{r}_j = 0$ for any $j \geq k + 1$,
 - (b) there exists a unique integer $m \le n$ such that $\boldsymbol{x}_m = \boldsymbol{x} \ (\boldsymbol{r}_m = 0)$ and $\boldsymbol{r}_{m-1} \ne 0$ or m = 0,
 - (c) If $\mathbf{r}_k \neq \mathbf{0}$ for some $k \geq 0$, then dim $W_k = k + 1$.
- 9. Show that for k < m

$$oldsymbol{y}_k = \sum_{i=0}^k rac{oldsymbol{r}_0^T oldsymbol{d}_i}{oldsymbol{d}_i^T A oldsymbol{d}_i} oldsymbol{d}_i.$$

(write $\mathbf{y} = \sum_{i=0}^{k} \eta_i \mathbf{d}_i$ and find η_i for each i).

10. Deduce that

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + \lambda_k oldsymbol{d}_k, \; \lambda_k = rac{oldsymbol{r}_0^T oldsymbol{d}_k}{oldsymbol{d}_k^T A oldsymbol{d}_k} = rac{oldsymbol{r}_k^T oldsymbol{d}_k}{oldsymbol{d}_k^T A oldsymbol{d}_k}.$$

- 11. Show that $W_k = \text{span}\{\boldsymbol{r}_0, A\boldsymbol{r}_0, ..., A^k\boldsymbol{r}_0\}$ for each $k \leq m$.
- 12. Show that

$$\boldsymbol{r}_{k+1}^T A \boldsymbol{d}_i = 0$$
 for each $0 \le i < k$.

13. Deduce that

$$\boldsymbol{d}_{k+1} = \boldsymbol{r}_{k+1} + \beta_k \boldsymbol{d}_k,$$

with

$$eta_k = -rac{oldsymbol{r}_{k+1}^T A oldsymbol{d}_k}{oldsymbol{d}_k A oldsymbol{d}_k}$$