EPF 2, 2006-2007 Mathématiques appliquées

TD 3 : Intégration numérique

Exercice 1.

Soit $f \in C^1(\mathbb{R})$ et h > 0. On approche f par le polynôme de Lagrange P_0 de degré 0 au point x = 0.

- a) Calculer $P_0(x)$ et majorer l'erreur $|f(x) P_0(x)|$ sur [0, h].
- b) On pose I(f) = hf(0). Montrer que $I(P_0) = \int_0^h P_0(x) dx$ et majorer l'erreur

$$E(f) = \int_0^h f(x) \, dx - I(f).$$

c) On pose pour a < b et $n \ge 1$, $x_k = a + kh$ avec $h = \frac{b-a}{n}$ et $k = 0, \dots, n$. Soit

$$I_n(f) = h\Big(f(x_0) + f(x_1) + \dots + f(x_{n-1})\Big).$$

Majorer $E_n(f) = \int_a^b f(x) \, dx - I_n(f)$. Estimer $\int_1^2 1/x \, dx - I_{10}(1/x)$.

Exercice 2.

Soit $f \in C^2(\mathbb{R})$ et h > 0. On approche f par le polynôme de Lagrange P_1 de degré 1 aux points x = 0 et x = h.

- a) Calculer $P_1(x)$ et majorer l'erreur $|f(x) P_1(x)|$ sur [0, h].
- b) On pose I(f) = h(f(0) + f(h)). Montrer que $I(P_1) = \int_0^h P_1(x) dx$ et majorer l'erreur

$$E(f) = \int_0^h f(x) \, dx - I(f).$$

c) On pose pour a < b et $n \ge 1$, $x_k = a + kh$ avec $h = \frac{b-a}{n}$ et $k = 0, \dots, n$. Soit

$$I_n(f) = h\left(\frac{1}{2}f(x_0) + f(x_1) + \dots + \frac{1}{2}f(x_n)\right).$$

Majorer $E_n(f) = \int_a^b f(x) \, dx - I_n(f)$. Estimer $\int_1^2 1/x \, dx - I_{10}(1/x)$.

Exercice 3.

Soit $f \in C^4(\mathbb{R})$. On considère la formule de quadrature élémentaire

$$\int_0^1 f(x) \, dx \sim f(0) + 1/6f'(0) + 1/3f'(1/2).$$

- a) Montrer que cette formule est exacte si $f \in \mathbb{R}_3[X]$. En dédure l'ordre de la fomule.
- b)On admet que l'erreur de la méthode précédente est majorée par

$$|E(f)| \le \frac{1}{720} ||f^{(4)}||_{\infty}$$

pour toute fonction $f \in C^4([0,1];\mathbb{R})$. A partir de cette méthode élémentaire, construire une méthode de quadrature pour approcher $\int_a^b f(x) \, dx$ à partir de toute subdivision $a = x_0 < x_1, \dots, < x_n = b$ d'un intervalle [a,b] et donner une majoration de l'erreur commise.

Exercice 4.

Calculer les noyaux de Peano associés aux méthodes des trapèzes et de Simpson sur l'intervalle [-1,1].