Mathématiques Appliquées (M. Blouza et Dumas)

PARTIEL MATHEMATIQUES APPLIQUEES

(2 heures, aucun document, calculatrice EPF autorisée)

Ex 1. On considère la fonction ϕ définie sur \mathbb{R} à valeurs réelles, définie par $\phi(x) = x^2 + c$ où c est un paramètre réel.

- a) On suppose $c=\frac{1}{4}$. Représenter graphiquement la fonction ϕ et déterminer son point fixe. Montrer que la suite récurrente définie par $x_0 \in \mathbb{R}$ et par $x_{p+1} = \phi(x_p)$ est croissante. Déterminer sa nature (convergence ou non) en fonction de la valeur de x_0 .
- b) On suppose c=0. Que dire à présent des suites récurrentes du type $x_{p+1}=\phi(x_p)$ en fonction de la valeur de x_0 ?
- Ex 2. On considère une méthode de quadrature élémentaire

$$\int_{-1}^{1} f(u)du \simeq \alpha(\beta f(u_0) + f(0) + f(u_2))$$

où α et β sont des réels donnés et u_0 et u_2 sont deux points non nuls et distincts de l'intervalle [-1,1].

- a) Déterminer les constantes α et β et les points u_0 et u_2 pour que cette formule soit exacte sur les polynômes de degré inférieur ou égal à 3.
- b) On admet que pour de telles valeurs de α , β , u_0 et u_2 , si $f \in \mathcal{C}^4([-1,1],\mathbb{R})$, l'erreur entre l'intégrale exacte de f sur [-1,1] et sa valeur approchée est majorée par

$$|E(f)| \le \frac{1}{360} ||f^{(4)}||_{\infty}$$

Décrire la méthode de quadrature élémentaire associée sur un intervalle de la forme $[a_0, a_0 + h]$ (et non plus sur [-1, 1]) et donner dans ce cas l'erreur commise.

- c) A partir de cette méthode élémentaire, construire une méthode de quadrature pour approcher $\int_a^b f(x)dx$ à partir de toute subdivision régulière $a=x_0< x_1,...,< x_n=b$ et donner une majoration de l'erreur commise en fonction de a,b,n et de $||f^{(4)}||_{\infty}$.
- Ex 3. On considère l'équation différentielle suivante :

$$\frac{dx}{dt}(t) = x^2(t) - 4\tag{2}$$

- a) Appliquer le théorème de Cauchy Lipschitz pour montrer l'existence et l'unicité locales d'une solution de (2) avec la condition $x(0) = x_0 \in \mathbb{R}$ donné.
- b) Montrer que si une solution x de (2) prend la valeur 2 ou -2, alors x est une fonction constante.
- c) Déterminer la solution explicite de (2) avec la condition $x(0) = x_0 \in \mathbb{R}$ donné. Vérifier en particulier que si $x_0 \notin [-2, 2]$, la solution 'explose' lorsque t tend vers t_f avec

$$t_f = \frac{1}{4} \ln(\frac{x_0 + 2}{x_0 - 2})$$

d) Donner en fonction de la position de x_0 par rapport à -2 et 2 l'allure de la solution x de (2).