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Abstract In this article we propose a new method in order to solve a general black-box global optimization
problem where function evaluations are expensive. Our work was motivated by many problems in
the oil industry, coming from several domains like reservoir engineering, molecular modeling, engine
calibration and inverse problems in geosciences. Even if evolutionary algorithms are often a good
tool to solve these problems, they sometimes need too many function evaluations, especially in high-
dimension cases. To overcome this difficulty, we propose here a new approach, called GOSGrid,
using as surrogate model the Sparse Grid interpolation method with a refinement process .
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1. Introduction

In the context of oil industry, many problems consist in a global minimization of a computa-
tionally expensive function with bound constraints ([1]):

Find x∗ = argminf(x)
xl ≤ x ≤ xu

x ∈ Rn

where f : Rd → R is the computationally expensive function and xl, xu ∈ Rn.
The values of f are in general the output of a complex simulator for which we don’t have an

explicit expression. The absence of any information on the function gradient narrows the reso-
lution field to algorithms using no first or second order derivatives. There exists many different
approaches in derivative free optimization, among which the most popular are direct search
methods like Nelder Mead or MADS ([2]) and evolutionary algorithms like genetic algorithms
([3]), evolution strategies or particle swarm optimization (see [4] for a review of DFO methods).
Unfortunately, all these approaches may exhibit a slow convergence behavior and thus be very
expensive.

The use of a surrogate model is well suited for the type of optimization considered here.
A surrogate model is a framework used to minimize a function by sequentially building and
minimizing a simpler model (surrogate) of the original function. A widely used form of surrogate
models consists of linear combinations of basis functions, for instance Radial Basis Functions
([5]) or Kriging. In general, the more points used when creating an interpolation model, the
more accurate is the approximation.

In this work, we construct a new surrogate model by using the Sparse Grid interpolation
method. Basically, the Sparse Grid approach is a hierarchical Lagrange approximation method
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which neglects the basis functions with the smallest supports. This approach was introduced
in 1963 by Smolyak ([6]) in order to approximate integrals in high dimensions. It was applied
for PDE approximations and more recently for sensitivity analysis ([7]) and optimization ([8]).
Compared to the approach in [8], a local refinement is constructed here in order to explore the
more promising regions. The Sparse Grid interpolation method is recalled in section 2 whereas
the new global optimization method is presented and applied for analytical test functions in
section 3.

2. The Sparse Grid interpolation method

The Sparse Grid interpolation method uses Lagrange polynomials on the Chebyshev points as
basis functions in dimension one. The extension to dimension d is done by simply tensoring the
formulas obtained in dimension one. The hierarchical approach and the sparsity principle are
respectively presented in the first two subsections. The refinement process is then described in
subsection 2.3.

2.1 The 1-D case

For i ∈ N, we call Xi the set of the Chebyshev points in the interval [0, 1] of level i. These sets
have the property that Xi ⊂ Xi+1. If we denote by aij the Lagrange polynomial associated to
each xij ∈ Xi, the interpolation model of level i of f , called mi(f), is equal to

mi(f) =
∑

xi
j∈Xi

f(xij)a
i
j . (1)

Define ∆k as the difference between two consecutive models, then:

∆k = mk(f)−mk−1(f) =
∑

xk
j∈Xk(f(xkj )−mk−1(f)(xkj )) . akj .

If we set Xk
∆ = Xk\Xk−1, as Xk−1 ⊂ Xk we get

∆k =
∑

xk
j∈Xk

∆

(f(xkj )−mk−1(f)(xkj ))︸ ︷︷ ︸
wk

j

. akj .

It means that for computing ∆k we only evaluate the function on the points that don’t belong
to the previous level sets. The telescopic sum principle and m0(f) = 0 give us:

mi(f) =
i∑

k=1

∆k.

Thus, in order to get the approximation of level i + 1 we only need to compute the function
values at the new interpolation points Xi+1

∆ .

2.2 The general case

For k = 1, . . . , d let Xik be a set of Chebyshev points of some level ik. By simply tensoring (1)
we get the Lagrange interpolation formula on the set

∏d
k=1 X

ik as:

m(i1,i2,...id)(f) =
∑

x
i1
j1
∈Xi1

. . .
∑

x
id
jd
∈Xid

f(xi1j1 , . . . , x
id
jd

)(ai1j1 ⊗ . . .⊗ aidjd).

With the same hierarchical approach done in dimension 1, we get
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m(i1,i2,...id)(f) =

i1∑
k1=1

. . .

id∑
kd=1

(∆k1 ⊗ . . .⊗∆kd).

If we only apply the sum on the indexes k = (k1, . . . , kn) such that |k|1 ≤ d + N − 1 we get
the Sparse Grid interpolation formula of level N , which neglects the smallest support basis
functions:

SGN (f) =
∑

|k|1≤d+N

(∆k1 ⊗ . . .⊗∆kd).

Figure 1. Sparse grid in 2-D for N=4. Number of
points: 29

Figure 2. Sparse grid in 2-D for N=4 and a re-
finement process of order 3. Number of points: 42

The interpolation points of a Sparse Grid of level N = 4 in dimension 2 is depicted on
Figure 1. Compared to a full grid of the same level which would contain 81 points, it is only
made of 29 points. More generally, it can be proven that for a sufficently smooth function
f , the approximation of f by a Sparse Grid model is of order O(N−2(logN)d−1) with only
O(N(logN)d−1) points.

2.3 The refinement process

In a global optimization problem, we need to explore the whole domain but we also need
sometimes to focus our attention to special promising zones (the exploitation phase). To do
so, a refinement process of the Sparse Grid interpolation model is used to construct a new and
more precise model around a promising point. A local Sparse Grid model interpolates the error
function in this area (see Figure 2) and can thus locally improve the current global model.

3. Global Optimization with a Sparse Grid model (GOSGrid)

Given a maximal number of function evaluations and bound constraints, the new optimization
method, called GOSGrid, sequentially minimizes Sparse Grid models of the objective function
f . In particular, during the process, it refines some zones in order to get a better solution.
The hierarchical principle allows us to improve the global model without throwing away the
previous one whereas the sparsity greatly reduces the number of exact evaluations, especially
in high dimensions.

Starting from a given hierarchical level, the algorithm constructs a global model in the area
described by the bound constraints. As the evaluation of the model is computationally inex-
pensive, a local multistart algorithm is run in order to find a global minimizer of the model.
We then compare the function value at this point with the lowest value of the function at the
grid and we keep the best of them. Then, we iteratively refine the global model in a hypercube
centered at this point, and minimize with the same multistart algorithm the improved model.
The construction of the next Sparse Grid level is done when a criteria based on the number of
evaluations needed to perform the refinement or a relative rate of decrease is fulfilled.
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Figure 3 gives a comparison between the GOSGrid method (continuous line) and a evolu-
tionary algorithm, namely an evolution strategy with a cumulative step length adaptation, for
the Michalewicz function in dimension d = 5.

Figure 3. Comparison between GOSGrid (cont.) and an evolutionary algorithm (mean and standard deviation)
for the Michalewicz function.

The refinement process corresponds to the small decreasing branches starting from the con-
tinuous line (here for the levels N = 3 to N = 5). For a given number of evaluations, the
cost function value for the evolutionary algorithm is higher than the corresponding one for the
GOSGrid approach. The figure shows the importance of the refinement step as the best points
are found after the refinement process. Other tests in higher dimension, which couldn’t be
included in the text due to space limitation, lead to the same conclusion.

4. Conclusions and perspectives

We present here a new global optimization tool for expensive functions, called GOSGrid. It is
based on the Sparse Grid interpolation method with a Sparse Grid refinement process. The
hierarchical construction of the surrogate model and its sparsity allows to reach a faster decrease,
in terms of cost function evaluations, compared to a classical evolutionary algorithm. The
next step will consist to improve the refinement strategy by making it more adaptive and
efficient (taking into account more promising points at the same time, for example) and to
apply GOSGrid on real reservoir engineering cases.
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