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Abstract In this article we propose a new method to solve a general black-box global
optimization problem with bound constraints where function evaluations are expen-
sive. Our work was motivated by many problems in the oil industry, coming from
several fields like reservoir engineering, molecular modeling, engine calibration and
inverse problems in geosciences. In such cases, classical derivative free optimiza-
tion methods often need too many function evaluations, especially in high-dimension
cases. To overcome this difficulty, we propose here a new optimization approach,
called GOSGrid (Global Optimization based on Sparse Grid), using successive sparse
grid interpolation as surrogate models.

Keywords global optimization · expensive functions · surrogate models · sparse
grid interpolation

1 Introduction

In the context of oil industry, many problems consist in a minimization process of a
computationally expensive function with bound constraints ([24]):
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Minimize f (x)
xl ≤ x≤ xu

x ∈ Rn

where xl , xu ∈ Rn and f : Rd → R is the computationally expensive function.
In order to speak of a global optimization approach as mentioned in the title, f

needs to be at least Lipschitz continuous (see [28] for a discussion on this subject).
In practical cases, this hypothesis may fall down so that we can only speak of a
minimization process.

The values of f are in general the output of a complex simulator for which we
don’t have any explicit expression. The absence of any information on the function
gradient narrows the resolution field to algorithms using no first or second order
derivatives.

There exists many different approaches in derivative free optimization (see [9]
for a review of DFO methods), among which the most popular are space partitioning
methods like DIRECT ([16]), direct search methods like Nelder Mead or MADS
([1,2]) but also evolutionary algorithms like genetic algorithms ([11,14]), evolution
strategies ([15]) or other similar methods. The main drawback for all these methods
is that they can suffer from a poor convergence rate and a high computational cost,
especially for high dimensional cases. However, they can succeed in finding a global
optimum where all other classical methods fail.

A surrogate modeling has been widely used for many years in the kind of op-
timization considered here. A surrogate model is a framework used to minimize a
function by sequentially building and minimizing a simpler model (surrogate) of the
original function (see examples in [4,22]).

Surrogate model-based methods can be classified into two groups: non interpo-
lating (quadratic polynomials and other regression models) and interpolating ones. A
widely used form of interpolating surrogate models consists in linear combinations
of basis functions, for instance Radial Basis Functions [11] or Kriging ([17], [18]).

In this paper, we construct a new surrogate model by using the sparse grid inter-
polation method. Basically, the sparse grid approach is a grid error-controlled hier-
archical approximation method which neglects the basis functions with the smallest
supports. This approach was introduced in 1963 by Smolyak [27] in order to eval-
uate integrals in high dimensions. It was then applied for PDE approximations but
also for optimization ([6,19]) and more recently for sensitivity analysis ([8]) . Com-
pared to the first optimization algorithm based on sparse grids proposed by Klimke
et al in [19], a local refinement step is constructed here in order to explore the more
promising regions. Moreover, no optimization steps are performed over the objective
function, which reduces significantly the number of function evaluations employed.

This paper is organized as follows: the basis and the refinement process of the
sparse grid interpolation method are developed in section 2, the GOSGrid algorithm
is presented in section 3 and in section 4, its performances are compared with other
derivative free global algorithms. The comparisons are based first on an analytical
benchmark and then on a parameter estimation problem in reservoir engineering.
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2 The sparse grid interpolation method

The sparse grid interpolation method that we have implemented uses Lagrange poly-
nomials on Chebyshev points as basis functions in one dimension. This choice is not
mandatory, we can also find for instance sparse grids on equidistant points where
basis functions are piecewise linear [27]. However, such choice is more suited for
the problems that we have treated where functions are supposed to be continous. The
expression in dimension d is done by simply tensoring the formulas obtained in one
dimension. The hierarchical approach and the sparsity principle are respectively pre-
sented in the first two subsections. A model refinement process is then described in
subsection 2.3.

2.1 The one-dimensional case and the hierarchical approach

Here, we suppose that we want to model a function

f : [0,1]→ R.

For i∈N, we call X i the set of Chebyshev points on the interval [0,1] of level i. These
sets have the property that the current step is included in the next one (X i ⊂ X i+1).

More precisely, the number of points in the set X i is given by:

ni =

{
1 if i = 1

2i−1 +1 if i > 1,

and each xi
j ∈ X i reads:

xi
j =

{
1
2 for j = 1 and ni = 1

1
2 (−cos(π j−1

ni−1 )+1) for j = 1, . . . ,ni and ni > 1.

Denote by ai
j the Lagrange polynomial associated to each xi

j ∈ X i:

ai
j(x) =

 1 for j = 1 and ni = 1

∏
ni
k=1,k 6= j

x−xi
k

xi
j−xi

k
for j = 1, . . . ,ni and ni > 1.

.

Then, the interpolation model of level i of f , called mi( f ), is equal to

mi( f ) = ∑
xi

j∈X i

f (xi
j)a

i
j. (1)

In order to explore the hierarchical aspect of the method, we define ∆ i as the differ-
ence between models of level i and i−1:

∆ i = mi( f )−mi−1( f ) = ∑xi
j∈X i( f (xi

j)−mi−1( f )(xi
j)) . ai

j.

If we set X i
∆
= X i\X i−1, we get
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∆
i = ∑

xi
j∈X i

∆

( f (xi
j)−mi−1( f )(xi

j))︸ ︷︷ ︸
wi

j

. ai
j, (2)

where wi
j is called j-th hierarchical surplus of level i. Formula (2) means that for

computing ∆ i we only evaluate the function on the points that don’t belong to the
previous set.
The telescopic sum principle and the convention m0( f ) = 0 give us the hierarchical
approach

mi( f ) = mi−1( f )+∆ i

= ∑
i
k=1 ∆ k.

In other words, in order to get the next approximation of level i+1 we will only need
to compute the function values at the new interpolation points X i+1

∆
.

2.2 The general case and the sparsity principle

In the general case, we want to model a function

f : [0,1]d → R,

For k = 1, . . . ,d, let X ik be a set of Chebyshev points of some level ik. By simply
tensoring (1) we get the Lagrange interpolation formula on the set X = ∏

d
k=1 X ik as:

m(i1,i2,...id)( f ) = ∑
x

i1
j1
∈X i1

. . . ∑
x

id
jd
∈X id

f (xi1
j1
, . . . ,xid

jd
)(ai1

j1
⊗ . . .⊗aid

jd
).

With the same hierarchical approach done in dimension one, we get the hierarchical
approach in dimension d over the full grid X:

m(i1,i2,...id)( f ) =
i1

∑
k1=1

. . .
il

∑
kl=1

. . .
id

∑
kd=1

(∆ k1 ⊗ . . .⊗∆
kl ⊗ . . .⊗∆

kd )︸ ︷︷ ︸
∆ k

,

Denote k = (k1, . . . ,kl , . . . ,kd) and ∆ k = ∏
d
i=1(mk( f )−mk−ei( f )) with ei the i-th

canonical vector in Rd and mk( f ) = 0 if there exists l such that kl = 0. In the case
where i j = N for every j = 1, . . . ,d, and nN = N, it can be showed that the number of
grid points is of order O(Nd) and the interpolation error is of order O(N−2). When
dimension grows, the number of grid points, and consequently the number of function
evaluations thus becomes too large to handle. In order to overcome this problem,
without loosing approximation precision, Smolyak proposed in [27] a new approach:
if we only apply the summation on the indexes k = (k1, . . . ,kd) such that

|k|1 =
d

∑
i=1

ki ≤ d +N−1,



Global Optimization based on sparse grid surrogate models for black-box expensive functions 5

we get the sparse grid interpolation formula of level N, which neglects the smallest
support basis functions:

SGN( f ) = ∑
|k|1≤d+N−1

(∆ k1 ⊗ . . .⊗∆
kd ).

With this new formula it can be proved that for a sufficiently smooth function f ,
the approximation SGN( f ) is of order O(N−2(logN)d−1) with only O(N(logN)d−1)
points if we use piecewise linear basis functions [5]. The desired effect is thus achieved,
that is an efficient reduction of number of grid points without loosing much precision
(see table 1). The interpolation points of a sparse grid of level N = 4 in dimension
2 is depicted on Figure 1(a). Compared to a full grid of the same level which would
contain 81 points, it is only made of 29 points.

Table 1 Number of grid points and associated interpolation error in dimension d.

Level N Number of grid points L2 error norm

Full grid O(Nd) O((N)−2)
sparse grid O(N(logN)d−1) O(N−2(logN)d−1)

2.3 The refinement process

In global optimization, we need to explore the whole domain but we also need some-
times to focus our attention to special promising zones (the exploitation phase). To
do so, a refinement process of the sparse grid interpolation model is used to con-
struct a new and more accurate model around a promising point. A local sparse grid
model interpolates the error function (difference between the function and the current
global model) in this area (see Figure 1(b)) and can thus locally improve the current
global model. The refinement domain is defined as an hypercube of the whole domain
defined by a center (the promising point) and its edge length. In order to get a con-
tinuous model function, basis functions are slightly modified to make them vanish at
the boundary of the refinement domain. As all basis functions vanish at the boundary
from level 3, only those corresponding to levels 1 and 2 need to be modified. The dif-
ference between the basis function of level 1 and the two basis functions from level
2 gives us a function that vanishes at the boundary. This new function is taken as the
refinement basis function of level 1 in dimension one: let bi

j be the j-th refinement
basis function in 1 dimension. Then, for j = 1, . . . ,mi where

mi =

{
1 if k = 1

ni+1 if i > 1,
,

we have
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{
b1

1 = a1
1−a2

1−a2
2

bi
j = ai+1

j if i > 1, j = 1, . . . ,mi.

We get the refinement basis functions in dimension d by a simple tensorization
of the refinement basis functions in dimension one. Even if this approach provides
a continuous refinement model, note that it does not provide a derivable one: the re-
finement model is not derivable at the points lying on the boundary of the refinement
domain.

(a) Sparse grid interpolation points for
N=4. Number of points: 29

(b) Sparse grid in 2-D for N=4 and a re-
finement process of order 3. Number of
points: 42

Fig. 1 Sparse grid and refined sparse grid of level 4.

3 Global Optimization based on sparse grid models (GOSGrid)

Given a maximum budget of function evaluations and bound constraints, the proposed
method, called GOSGrid, sequentially minimizes sparse grid models of the objective
function f . In particular, during the process, it refines some potentially interesting
zones to get a lower-value of the cost function. The hierarchical principle allows us to
improve the global model without throwing away the previous function evaluations.
Moreover, the sparsity greatly reduces the number of exact evaluations, especially in
high dimensions.

The GOSGrid and DIRECT algorithms ([16]) share some similarities in the space
partitioning principle. However, note that in the GOSGrid algorithm, the local and
global searches are done sequentially even though the same reconstruction principle
is used for both steps. Moreover, optimization sequences on the surrogate models are
included in GOSGrid which is not the case for the DIRECT algorithm.

The algorithm starts by constructing the global model of level 1 (build from the
central grid point) in the area described by the bound constraints. Global model min-
imization is performed from level 2, the refinement process and the minimization of
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Global model
construction

Global model
minimization

Refinement
Refined model
minimization

Fig. 2 GOSGrid algorithm diagram

the refined model from level 3. The general steps of the GOSGrid algorithm are given
in figure 2 , these steps are detailed below and the complete algorithm is synthesized
in Algorithm 1 of Appendix A.

I.1. Model construction If the maximum number of function evaluations is not yet
reached, the interpolated sparse grid model is constructed in this step, according to
the hierarchical approach : if the current level is greater than 1 then the new model
is updated from the previous one by adding new terms coming from the new points
included to the current interpolation set.

I.2. Best grid point In this step we choose the best function value between all the
objective function evaluations already performed on the global grid. We save this
value and the point where the function achieve it.

II.1. Model minimization If the current level is greater than 1, a global optimization
of the model is performed in this step. As the model function is computationally
inexpensive to compute and smooth, it is minimized by a multistart gradient type
method, where the number of initial points is taken here equal to 10d. These initial
points are created using a Latin Hypercube design [20].

II.2. Value’s comparison The objective function is evaluated at the minimum point
found in II.1. and this value is compared with the value of the best grid point (already
computed in I.2). We save the best of them and the point where the function achieves
it. This point will be used as the center of the refinement domain in the next step.
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III. Model refinement If the maximal number of function evaluations is not yet reached
and if the global level is greater than 3, a refinement process is performed in this step.
The refinement domain is an hypercube in the normalized domain, centered at the
point found in step II.2. Its size is the 10% of the global domain.
If the point found in II.2. is too close from the boundary of the global domain, the
refinement area may be not included in the domain. Then some points of the refine-
ment grid may lie outside of the domain. For some industrial application (like the one
presented in section 4.2) the evaluation of the function at these points may lead to a
non physical value (or even to a crash). In this case, function values can be replaced
by global model values at non admissible points.

IV.1 Refined model minimization The refined model is minimized in a slightly smaller
area than the refinement domain in order to avoid bound irregularity effects. Again, as
model evaluations are computationally inexpensive, the refined model is minimized
by a multistart gradient type method including the minimum point of the refined grid.

IV.2 Value’s comparison The best value of the function on the refined grid is com-
pared with the minimum value found in IV.1. The best objective function value and
the point associated to it are saved. If the cumulative number of performed function
evaluations is not greater than the maximal number of evaluations and if the refine-
ment level is strictly lower than the global level, then the refinement level is increased
by one and the algorithm is restarted from step III. For other cases the global level is
increased by one and the algorithm is restarted from step I.

Note that a convergence proof to the global optima of a Lipschitz continuous
function f on an hypercube can be performed for the GOSGrid algorithm when the
interpolation level goes to infinity. This property comes from the sparse grid con-
struction itself and not from the optimization process that is done at each step: when
the global interpolation level goes to infinity, it can be proven that the interpolation
points will fill the whole hypercube for any given tolerance δ > 0.

4 Numerical applications

In this section, the numerical results obtained when applying the new optimization
strategy GOSGrid are shown, first on an analytical benchmark and then on an applied
problem in oil engineering. This approach is compared with an evolution strategy,
a space partitioning method and the first sparse grid based optimization algorithm
where no refinement is performed. In order to compare the efficiency of the different
methods, the results are depicted by using data profile plots.

4.1 Benchmark validation

In order to validate the algorithm, GOSGrid has been tested on a benchmark con-
taining many global optimization problems with bound constraints (see a detailed
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description of the benchmark in Appendix B). The results obtained with GOSGrid
are compared with:

(i) a classic evolution strategy called CMA-ES ([15]),
(ii) the space partitioning DIRECT algorithm ([16]),
(iii) the first Sparse Grid optimization method proposed by Klimke ([19]).

All these tools have been used with their nominal parameters.
Figure 3 gives a comparison between these four optimization methods for the

Michalewicz function in dimension d = 5. Note that in this case, the global minimum
is approximately equal to −4.687.
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Fig. 3 Michalewicz function minimization in 5 dimensions

After 1000 function evaluations, it can be seen that the lowest function value is
found by GOSGrid. Actually, this example has been chosen to illustrate the impact
of the refinement process when comparing GOSGrid and the algorithm from Klimke
where no refinement is performed.

Data profile comparison

In order to compare GOSGrid with the other methods, a data profile plot, a well-
known comparison method in derivative-free optimization ([23]), is chosen. Data
profiles indicate the efficiency of a solver (for a given number of functions evalu-
ations) to reach a specific reduction in function value, measured by

f (x0)− f (x∗)≥ (1− τ)( f (x0)− fL), (3)

where x0 is the initial point, fL is the best value found by all solvers for the same
problem and τ is the reduction rate. For a given problem p and a solver s, we call tp,s
the number of functions evaluations needed to find x∗ in order to satisfy inequality (3).
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The data profile of a solver s is then defined as the distribution function of tp,s
d+1 , where

d is the problem dimension. If we note P the set of problems, for a given number of
function evaluations α we define:

ds(α) =
1
|P|

#{p ∈P|
tp,s

d +1
≤ α}, (4)

which is the percentage of problems that can be solved (for a given tolerance τ) with
the α evaluations of the function. So, ds(α) is the percentage of problems that can be
solved with the equivalent to α gradient estimation by finite differences.

Figures 4 and 5 show four data profiles for the whole benchmark functions or a
part of it.
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Fig. 4 Data profiles for τ = 10−3 and τ = 10−5 and benchmark functions of dimension d = 2

In figure 4, we consider only the 21 benchmark functions where d = 2. For a rate
τ = 10−3, the best solver appears to be GOSGrid whereas for τ = 10−5 it is DIRECT.
However, in the two cases, note that for a small number of functions evaluations,
GOSGrid performs better than DIRECT.

In figure 5 we consider the whole 68 benchmark functions with dimensions rang-
ing from d = 2 to d = 25. For the two rates, if we accept a high computational budget,
the best method appears to be CMA-ES, followed by GOSGrid, DIRECT and the
Klimke algorithm. However, as before, for a small number of function evaluations
and for the two rates, GOSGrid overperforms all the other methods.
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Fig. 5 Data profiles for τ = 10−3 and τ = 10−5 and all benchmark functions

4.2 A reservoir characterization problem

The goal of reservoir characterization is the estimation of reservoir parameters in
order to take decisions for future production scheme. There are two types of param-
eters: those related to the geological modeling (spatial distribution of permeability,
porosity, faults) and those related to fluid flow modeling (productivity index of wells,
relative permeability curves). These parameters cannot by determined by local mea-
surements on the field. On the other hand, some functions of these parameters can
be measured, like bottom-hole pressure, gas-oil ratio, oil rate at the wells or com-
pressional and shear wave impedance for seismic campaigns at different calendar
times during production. These function values can also be computed by a simulator,
which is expensive in terms of CPU time and do not provide any information about
the derivatives.

In this setting, reservoir characterization is an inverse problem, formulated as the
minimization of a least-square objective function where each residual is the difference
between simulated and observed values. This problem is also referred as history-
matching.

The global minimization of this problem yields the parameter values which best
fit the data of the problem, and then, the presumed reservoir parameters. Some weights
can be introduced to normalize and incorporate confidence information in the data
points; the confidence in the experimental data is typically taken into account by mak-
ing the weights equal to the reciprocal of the standard deviation of the experimental
data at each time point and state, while the maximum value of the data or simulations
for each state is typically used when the values of the states differ significantly in
magnitude.
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In general, these problems can be solved by non-linear optimization methods like
SQP [3,26], where derivatives are approximated by finite differences. Even if these
methods are local, in practice they are quite efficient and they can be easily cou-
pled with a multistart algorithm to seek for a global solution. But in a multistart
approach, the number of function evaluations needed to compute derivatives is too
high. This fact makes the resolution very expensive, and then, cheaper strategies are
needed. Derivative-free techniques seem to be the best alternative for this problem,
specially those with a low-cost in terms of function evaluations. This is the reason
why GOSGrid is presented as a potential solution strategy for this problem. Note
that some previous application studies based on derivative-free methods have already
been realized for a close but different application concerning groundwater supply and
hydraulic capture [13].

The PUNQ test case The PUNQ test case was already used for comparative inver-
sion studies in the European PUNQ project ([12]) and for validation of constrained
modeling and optimization scheme development methods ([25]). In this test case,
depicted on figure 6, the reservoir is surrounded by an aquifer in the north and the
west and delimited by a fault in the south and the east. A small gas cap is initially
present. The geological model is composed of five independent layers. Layers 1, 3, 4
and 5 are presumed to be of good quality, while layer 2 is of poorer quality. The syn-
thetic production data are calculated using the PumaFlow IFPEN flow simulator with
a black oil model over an eight-year period. The production results selected are the
gas oil ratio (GOR), the cumulative oil production (CUM OIL SURF) and the water
cut (WTC) value at the six production wells (PRO-1, 4, 5, 11, 12 and 15), and the
total cumulative oil production (CUM PROD OIL SURF).

For history matching, the parameters of the simulation model are constrained by
production data. An optimal matching is sought by minimization of the following
objective function

f (x) =
1
2

6

∑
i=1

np

∑
j=1

(dsim
Pi

(x, t j)−dobs
Pi

(t j))
2, (5)

where i = 1, . . . ,6 is the well index; and t j, j = 1, . . . ,np are the measurements
times of production data. The inversion parameters are four transmissivity multipliers
which model the fluid migration ability (MPH2, MPH1, MPV2, MPV1), the resid-
ual oil saturation after water sweeping (SORW), the residual oil saturation after gas
sweeping (SORG) and the aquifer permeability (AQUI).

The analyzed case is in fact noisy. It was constructed by adding a relative noise
of 4% to the production values, which introduces new local minima. The reference
values of the unknown parameters and their bounds are given in table 2. The value
of the objective function at the reference values of the unknown parameters is equal
to 1.794.

As we desire a global solution, GOSGrid was compared to the most performant
solver in the data profile : the evolutionary strategy CMA-ES. Given the stochastic
characteristic of this last method, it was run 10 times in order to estimate a mean-
standard deviation curve. Modeling with the sparse grid technique was done as fol-
lows: each residual of the mismatch term was modeled, and the global function model
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Fig. 6 Top structure of the PUNQ test case extracted from [12]

Table 2 Reference values and bounds for the inversion parameters

Ref. value Min. value Max. value

MPH2 1.1 0.8 1.2
MPH1 0.9 0.8 1.2
MPV2 1.1 0.8 1.2
SORW 0.16 0.15 0.25
MPV1 1.1 0.8 1.2
SORG 0.19 0.15 0.2
AQUI 0.22 0.2 0.3

was then the sum of squares of each residual model. This approach is particularly
suited for least-square functions, the global model being more accurate. It implies an
extra computational cost due to the construction of each residual model (compared
to the construction of one global model). But, in this application, this computational
time is negligible compared to the cost of computing the synthetic production data
(i.e. the residual values).

Figure 7(a) compares the two optimization methods. The abscissa axis is the num-
ber of function evaluations and the ordinate axis is the objective function value. The
dotted line corresponds to the evolution strategy (mean-standard deviation) and the
continuous line to GOSGrid method where each of the mismatch terms was modeled.
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(a) GOSGrid (continuous line) and an evolution strategy (mean and standard deviation) for the PUNQ
case (function values vs. number of function evaluations)

(b) Zoom of the previous figure on the axis of function values

Fig. 7 Comparison between GOSGrid and an evolution strategy for the reservoir characterization problem
corresponding to the PUNQ case.

It can be seen that the lower function value is obtained with the GOSGrid al-
gorithm. The refinement process corresponds to the continuous lines that leave the
main curve (around 120 function evaluations) and its impact can be appreciated in
figure 7(b). The best function value (around 1.67052 for 127 evaluations), and the
nearest parameters values to the reference’s ones are found as the result of the refine-
ment process of level 3. In order to get a smaller function value than the one found
by GOSGrid the evolution strategy would need to perform 650 additional function
evaluations and the corresponding function value is 1.6702.

5 Conclusions and perspectives

A new global optimization tool for computationally expensive functions, called GOS-
Grid, is presented here. It is based on the sparse grid interpolation method with a
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sparse grid refinement process. The hierarchical construction of the surrogate model
and its sparsity allows to reach a fast decrease in a minimization process. After a
benchmark validation including a comparison with various well known optimization
methods (among them, CMAES and DIRECT), the GOSGrid algorithm has been
successfully applied on a practical reservoir engineering case. The next step will con-
sist of improving the refinement strategy by making it more adaptive, for example by
taking into account more promising points at the same time.
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Appendix A: the GOSGrid algorithm

In this appendix we first detail the GOSGrid algorithm. Input and output parameters are specified and the
general steps of figure 2 are described.

Algorithm 1 Algorithme GOSGrid
Inputs
f: objective function
NevalMax: maximal number of available function evaluations
d: problem dimension
I: d×2 bound matrix
i Outpouts:
min: global minimum
pmin: Matrix of optimal points

I & II.Global model construction and minimization
Set N=1; NEval=1; MIN=[]; FMIN=[].
while NEval ≤ NEvalMax do

Sparse Grid global model construction of level N of f .
if N ≥ 2 then

Choice of the best grid point xgrid , computation of fgrid = f (xgrid).
Global minimization of the global model by a multi-start minimization algorithm in order to find
xglob and fglob = f (xglob).
Comparison between fgrid et fglob in order to save the best point xmin and the best value fmin.

else
xmin is the central grid point and fmin = f (xmin).

end if
Update of the numer of performed function evaluations NEval.
Set MIN=[MIN; xmin]; FMIN=[FMIN, fmin].
III & IV. Refined model construction and minimization
Set M=2; ∆1 = 0; ∆2 = 0; MINra f f =[]; FMINra f f =[].
Calculation of the number of points NEvalra f f needed to construct the refinement grid of level M.
while NEvalra f f ≤ NEval or ∆2 ≥ 0.1∗∆1 do.

Refinement around xmin. Creation of the Sparse Grid refined model of level M.
Choice of the best refined grid point xra f f , computation of fra f f = f (xra f f ).
Global minimization of the refined model by a multi-start minimization algorithm
in order to find xrep et frep = f (xrep).
Comparison between frep and fra f f to save the best point xminra f f and the best value fminra f f .
Set MINra f f =[MINra f f ; xminra f f ]; FMINra f f =[FMINra f f , fminra f f ].
Set MIN=[MIN; xminra f f ]; FMIN=[FMIN, fminra f f ].
if M ≥ 5 then

Calculation of the relative change rate between the four last solutions:
∆1 = |FMINra f f (M-3)-FMINra f f (M-4)|,
∆2 = |FMINra f f (M-1)-FMINra f f (M-2)|.

end if
Set M←M+1.
Update NEvalra f f .

end while
Set N← N+1.
Update NEval

end while
min is the lowest value of FMIN and pmin is a matrix containing in each line the lines of MIN for

which the value of f is min.
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Appendix B: benchmark information

In this appendix, the benchmark functions, their dimension and the search domain are specified. This
benchmark is a collection of bound constrained optimization problems for global minimization proposed
by A. L. Custodio and J. F. A. Madeira on a paper to appear [10]. It contains classical problems in optimiza-
tion, with many local minima or particularities like long and narrow flat valleys. The problem dimensions
are between 2 and 25. Domains are conceived in a way such that the global minimizer is not on its center.
The reference paper for each problem is presented in the last column of table 3.

Function Dimension Domain Reference

Ackley 10 [−27 33]10 [21]
Aluffi-Pentini 2 [−10 10]2 [21]
Becker-Lago 2 [−50 50]2 [21]
Bohachevsky 2 [−45 55]2 [21]
Branin-Hoo 2 [−5 20]2 [21]
Cauchy 4 [3 17]2 [7]
Cauchy 10 [2 26]10 [7]
Cauchy 25 [4.1 2745.6]10 [7]
Cosine mixture 2 [−11]2 [7]
Cosine mixture 4 [−11]4 [7]
Deeker-Aarts 2 [−20 20]2 [21]
Epistatic Michalewicz 5 [0 π]5 [21]
Epistatic Michalewicz 10 [0 π]10 [21]
Exponential 2 [−0.9 1.1]2 [7]
Exponential 4 [−0.9 1.1]4 [7]
Fifteen local minima 2 [−10 10]2 [7]
Fifteen local minima 4 [−10 10]4 [7]
Fifteen local minima 6 [−10 10]6 [7]
Fifteen local minima 8 [−10 10]8 [7]
Fifteen local minima 10 [−10 10]10 [7]
Fletcher-Powell 3 [−10 10]3 [7]
Goldstein-Price 2 [−2 2]2 [7]
Griewank 10 [−360 440]10 [29]
Gulf 3 [0.1 100; 0 25.6; 0 5] [21]
Hartman 4 3 [0 1]3 [7]
Hartman 4 6 [0 1]6 [7]
Hosaki 2 [0 5; 0 6] [21]
Kowalik 4 [0 0.42]4 [21]
Langerman 10 [0 10]10 [21]
Mc Cormick 2 [−1.5 4; −3 3] [21]
Meyer-Roth 3 [−10 10]3 [7]
Miele-Cantrell 4 [−10 10]4 [7]
Multi Gaussian 2 [−2 2]2 [7]
Neumaier 2 4 [0 4]4 [21]
Neumaire 3 10 [−100 100]10 [21]
Odd Square 20 [−15 15]20 [21]
Paviani 10 [2.001 9.999]10 [21]
Periodic 2 [−9 11]2 [21]
Poissonian 2 [1 21; 1 8] [7]
Powell 4 [−9 11]4 [21]
Rastrigin 10 [−4.6 5.6]2 [21]
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Rosenbrock 2 [−5.12 5.12]2 [7]
Rosenbrock 10 [−2.048 2.048]10 [7]
Salomon 5 [−90 110]5 [21]
Salomon 10 [−90 110]10 [21]
Schaffer 1 2 [−90 110]2 [21]
Schaffer 2 2 [−90 110]2 [21]
Schwefel 10 [−450 550]10 [21]
Shekel 410 4 [0 10]4 [7]
Shekel 45 4 [0 10]4 [7]
Shekel 47 4 [0 10]4 [7]
Shekel fox-holes 5 [0 10]5 [21]
Shekel fox-holes 10 [0 10]10 [21]
Shubert 2 [−10 10]2 [21]
Sinusoidal 10 [0 180]10 [21]
Sinusoidal 20 [0 180]20 [21]
Six hump camel back 2 [−2.5 1.5; −1.5 2.5 [7]
Sphere 3 [−4.65.6]3 [29]
Storn-Tchebychev 9 [−128 128]9 [21]
Tenn local minima 2 [−10 10]2 [7]
Tenn local minima 4 [−10 10]4 [7]
Tenn local minima 6 [−10 10]6 [7]
Tenn local minima 8 [−10 10]8 [7]
Three hump camel back 2 [−4.5 5.5]2 [21]
Transitor 9 [−10 10]9 [21]
Wood 4 [−10 10]4 [7]

Table 3 Benchmark functions, dimension, search domain and reference.


