Université P. et M. Curie Licence de Mathématique B Année 2003-2004 Sylvie Delabrière Equations différentielles Méthodes de résolution numérique

Corrigé de l'Examen du 9 Septembre 2004

Ι

1) La fonction $f(x) = x^3 + 2x + 1$ est strictement croissante sur \mathbb{R} car sa dérivée $f'(x) = 3x^2 + 2$ est strictement positive. Comme f est continue, qu'elle tend vers $+\infty$ quand $x \to +\infty$ et vers $-\infty$ quand $x \to -\infty$, elle admet une et une seule racine réelle.

2)
$$f(-\frac{1}{2}) = -\frac{1}{8} \le 0$$
 et $f(-\frac{2}{5}) = \frac{17}{125} \ge 0$ donc $-\frac{1}{2} \le a \le -\frac{2}{5}$.

3) Comme $f'(x) \neq 0$ sur \mathbb{R} , φ est bien définie sur \mathbb{R} et $\varphi(x) = x - \frac{f(x)}{f'(x)} = \frac{2x^3 - 1}{3x^2 + 2}$.

4) La suite récurrente $x_{p+1} = \varphi(x_p)$ converge vers a lorsque x_0 est choisi dans un intervalle où $|\varphi'(x)| < 1$. Or $|\varphi'(x)| = \left|\frac{f(x)f''(x)}{f'(x)^2}\right| = \left|\frac{6x(x^3 + 2x + 1)}{(3x^2 + 2)^2}\right| \le \frac{3\frac{17}{125}}{4} = \frac{51}{600} < 1$, pour $x \in [-\frac{1}{2}, -\frac{2}{5}]$.

5) Le point a est un point super-attractif pour φ et on a $|x_p - a| \leq \frac{1}{2M} (2M |x_0 - a|)^{2^p}$, où $M = \max_{x \in [-\frac{1}{\alpha}, -\frac{2}{\alpha}]} \left| \frac{f''(x)}{f'(x)} \right| \leq \frac{3}{2}$.

 \mathbf{II}

- 1) La fonction f est de classe C^{∞} donc elle est localement lipschitzienne par rapport à x et elle ne dépend pas de t. Donc par le théorème de Cauchy Lipschitz, cette équation différentielle admet une unique solution locale pour toute condition initiale $y(0) = y_0 \in \mathbb{R}^2$.
- 2) La fonction $U(x) = x_1^4 + x_2^4 + x_1^2 x_2^2$ vérifie les conditions 1 et 2 du théorème de Liapounov. Vérifions la condition 3 :

$$DU(x)f(x) = (4x_1^3 + 2x_1x_2^2 + 4x_2^3 + 2x_2x_1^2) \begin{pmatrix} x_1 - 4x_1^3 - 2x_1x_2^2 \\ x_2 - 4x_2^3 - 2x_2x_1^2 \end{pmatrix}$$

$$= 4x_1^4 - 16x_1^6 - 8x_1^4x_2^2 + 2x_1^2x_2^2 - 8x_1^4x_2^2 - 4x_1^2x_2^4 + 4x_2^4 - 16x_2^6 - 8x_2^4x_1^2 + 2x_2^2x_1^2 - 8x_2^4x_1^2 - 4x_2^2x_1^4$$

$$\leq 4x_1^4 + 4x_2^4 + 4x_1^2x_2^2 = 4U(x)$$

La fonction U est bien une fonction de Liapounov pour l'équation différentielle considérée et on en déduit l'existence d'une solution globale sur tout intervalle [0,T] donc sur $[0,+\infty[$, pour toute condition initiale.

3) Cette équation différentielle n'est pas de type gradient associée à la fonction U car $f(x) \neq -\nabla U(x)$.

III

1) Pour que cette méthode soit d'ordre 2, il faut qu'elle soit exacte pour les polynômes de degré inférieur ou égal à 2. Ceci donne 3 conditions :

$$\int_0^1 du = 1 = a + b + c$$

$$\int_0^1 u \, du = \frac{1}{2} = \frac{b}{3} + \frac{c}{2}$$

$$\int_0^1 u^2 \, du = \frac{1}{3} = \frac{b}{9} + \frac{c}{4}$$

La solution de ce système est $a = \frac{1}{2}, b = -\frac{3}{2}, c = 2.$

2) a) (M_2) : $\int_0^{\frac{1}{3}} f(u) du \sim \frac{1}{3} f(0)$. C'est la méthode des rectangles qui est d'ordre 0. (M_3) : $\int_0^{\frac{1}{2}} f(u) du \sim \alpha f(0) + (1 - \alpha) f(\frac{1}{3})$.

 $\int_0^{\frac{1}{2}} u \, du = \frac{1}{8} \sim (1 - \alpha) \frac{1}{3}.$ Pour que la méthode soit d'ordre 1, il faut que $\alpha = \frac{5}{8}$.

 $\int_0^{\frac{1}{2}} u^2 du = \frac{1}{24} \sim \frac{3}{8} \frac{1}{9} = \frac{1}{24}.$ Donc pour $\alpha = \frac{5}{8}$, la méthode est d'ordre au moins 2.

 $\int_0^{\frac{1}{2}} u^3 du = \frac{1}{64} \sim \frac{3}{8} \frac{1}{27} = \frac{1}{72}.$ La méthode n'est donc pas d'ordre 3 pour $\alpha = \frac{5}{8}$, elle est

donc d'ordre exactement 2 dans ce cas et d'ordre 0 si $\alpha \neq \frac{5}{8}$.

b) L'algorithme définissant la méthode de Runge Kutta définie par ce tableau s'écrit :

$$t_{n,1} = t_n, y_{n,1} = y_n, p_{n,1} = f(t_n, y_n)$$

$$t_{n,2} = t_n + \frac{1}{3}h_n, y_{n,2} = y_n + \frac{1}{3}h_n p_{n,1}, p_{n,2} = f(t_{n,2}, y_{n,2})$$

$$t_{n,3} = t_n + \frac{1}{2}h_n, y_{n,3} = y_n + h_n[\alpha p_{n,1} + (1-\alpha)p_{n,2}], p_{n,3} = f(t_{n,3}, y_{n,3})$$

$$t_{n+1} = t_n + h_n, y_{n+1} = y_n + h_n[\alpha p_{n,1} + bp_{n,2} + cp_{n,3}], p_{n+1} = f(t_{n+1}, y_{n+1})$$

c) Pour utiliser les résultats du cours, on reprend les notations du cours :

$$q = 3, c_1 = 0, c_2 = \frac{1}{3}, c_3 = \frac{1}{2}, a_{2,1} = \frac{1}{3}, a_{3,1} = \alpha, a_{3,2} = 1 - \alpha, b_1 = a, b_2 = b, b_3 = c$$

L'ordre de cette méthode est ≥ 2 ssi $\sum_{i=1}^{3} b_i c_i = \frac{1}{2}$. Or, $\sum_{i=1}^{3} b_i c_i = \frac{b}{3} + \frac{c}{2}$. Donc la méthode est d'ordre ≥ 2 ssi 2b + 3c = 3.

L'ordre de cette méthode est ≥ 3 ssi de plus, $\sum_{i=1}^{3} b_i c_i^2 = \frac{1}{3}$ et $\sum_{i=1}^{3} \sum_{j=1}^{i-1} b_i a_{i,j} c_j^2 = \frac{1}{6}$. Or,

$$\sum_{i=1}^{3} b_i c_i^2 = \frac{b}{9} + \frac{c}{4} \text{ et } \sum_{i=1}^{3} \sum_{j=1}^{i-1} b_i a_{i,j} c_j^2 = \frac{c}{9} (1 - \alpha). \text{ Donc la méthode est d'ordre } \ge 3 \text{ ssi}$$
$$4b + 9c = 12 \text{ et } c(1 - \alpha) = \frac{3}{2}.$$

La méthode est d'ordre supérieur ou égal à 3 ssi $b=-\frac{2}{3}, c=2, \alpha=\frac{1}{4}$ et donc aussi $a=\frac{1}{2}$.

1) En utilisant les développements de Taylor suivants :
$$f_{i\pm 1} = f_i \pm h f_i^{'} + \frac{h^2}{2} f_i^{''} \pm \frac{h^3}{6} f_i^{'''} + \frac{h^4}{24} f_i^{(4)} \pm \frac{h^5}{120} f_i^{(5)} + \frac{h^6}{720} f_i^{(6)} + O(h^7)$$

$$f_{i\pm 1}^{''} = f_i^{''} \pm h f_i^{'''} + \frac{h^2}{2} f_i^{(4)} \pm \frac{h^3}{6} f_i^{(5)} + \frac{h^4}{24} f_i^{(6)} + O(h^5)$$
 nous obtainers

$$f_{i+1} + f_{i-1} - 2f_i + \alpha f_{i+1}^{"} + \beta f_i^{"} + \gamma f_{i-1}^{"} =$$

$$f_{i}^{"}\left[h^{2}+\alpha+\beta+\gamma\right]+hf_{i}^{"'}\left[\alpha-\gamma\right]+f_{i}^{(4)}\left[(h^{4}/12)+(h^{2}/2)(\alpha+\gamma)\right]+f_{i}^{(5)}\left[(h^{3}/6)(\alpha-\gamma)\right]+f_{i}^{(6)}\left[(h^{6}/360)+(h^{4}/24)(\alpha+\gamma)\right]+O(h^{5})$$

Pour que le schéma soit d'ordre au moins 3, il faut annuler les termes devant les dérivées successives $f_i'', f_i''', f_i^{(4)}$. Nous obtenons le système linéaire suivant de 3 équations à 3 inconnues:

$$\begin{cases} h^2 + \alpha + \beta + \gamma = 0 \\ \alpha - \gamma = 0 \\ (h^4/12) + (h^2/2)(\alpha + \gamma) = 0 \end{cases}$$

qui a une solution unique : $\alpha = \gamma = -h^2/12, \beta = -5h^2/6.$

2) Pour ces valeurs de α, β, γ , on voit que le terme en h^3 disparait, mais pas celui en h^4 . Ce schéma est donc d'ordre 4.