Année 2013-2014

semestre 1

http://dumas.perso.math.cnrs.fr/MA350.html

MA350, EXAMEN FINAL

Les programmes Scilab et Maxima seront implémentés sur votre ordinateur puis envoyés à l'adresse laurent.dumas@uvsq.fr à la fin de l'examen.

L'ensemble des programmes Scilab (respectivement Maxima) sera envoyé sous la forme d'un seul fichier dénommé MA350-n.sci (respectivement MA350-n.wxm) où n représente votre numéro d'anonymat.

Une copie manuscrite sera également rendue en complément pour expliquer la démarche et éventuellement résoudre les trois exercices.

Exercice 1 On cherche à résoudre une équation du type f(x) = 0 de manière approchée avec l'algorithme suivant : on construit une suite $(x_n)_n \in \mathbb{N}$ telle que :

- (i) x_0 et x_1 sont distincts quelconques,
- (ii) pour tout $n \ge 1$, on a :

$$x_{n+1} = x_n - f(x_n) \left(\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \right)$$

- 1. Ecrire un programme Scilab permettant de calculer la suite $(x_n)_n \in \mathbb{N}$ pour une fonction f quelconque.
- 2. On considère la fonction $f(x) = x^3 + x 4$. Déterminer avec Maxima l'unique solution réelle x^* de l'équation f(x) = 0.
- 3. Utiliser la méthode précédente pour calculer de manière approchée x^* en prenant $x_0 = 4$ et $x_1 = 2$.
- 4. Combien faut-il d'itérations de l'algorithme précédent pour obtenir une approximation à 10^{-10} près de x^* ? Commenter.

Exercice 2 On cherche à étudier sur $]\frac{1}{2}, +\infty[$ à l'aide de Maxima la fonction :

$$f(x) = (4x - 2)\ln(2x - 1) + 6x$$

- 1. Représenter graphiquement avec Maxima la courbe associée à f sur $]\frac{1}{2}, 5[$.
- 2. Calculer la dérivée de f avec Maxima et en déduire ses variations.
- 3. Calculer les limites de de f aux bornes de son domaine de définition.
- 4. Donner l'allure de la courbe représentative de f près de $\frac{1}{2}$ avec l'aide de Maxima. Commenter.
- 5. Calculer la dérivée seconde de f avec Maxima et en déduire sa convexité.

Exercice 3 On désire résoudre l'équation différentielle (ED) suivante :

$$y''' - 2y'' - y' + 2y = 0 (ED)$$

avec les conditions initiales y(0) = 1, y'(0) = 3, y''(0) = -1. On pose

$$Y(t) = \begin{pmatrix} y(t) \\ y'(t) \\ y''(t) \end{pmatrix}, \tag{1}$$

On note Y' le vecteur dérivée de Y, c'est-à-dire

$$Y'(t) = \begin{pmatrix} y'(t) \\ y''(t) \\ y'''(t) \end{pmatrix}. \tag{2}$$

Ecrire l'équation (ED) sous la forme matricielle équivalente

$$Y'(t) = AY \tag{3}$$

- 1. On résout d'abord cet exercice sur feuille.
 - (a) Diagonaliser la matrice A sous la forme $A = PDP^{-1}$.
 - (b) On pose $Z = P^{-1}Y$. Calculer Z(0) et montrer que Z' = DZ.
 - (c) Résoudre cette équation, c'est-à-dire trouver l'expression de Z(t) en fonction de t.
 - (d) En déduire l'expression de Y(t) puis de y(t).
- 2. On reprend cet exercice avec Maxima
 - (a) Essayer de résoudre directement l'équation (ED) avec Maxima. Qu'obtienton?
 - (b) Diagonaliser la matrice A avec Maxima
 - (c) En posant comme précédemment $Z = P^{-1}Y$, déterminer la valeur de Z(0) puis celle de Z(t) avec Maxima.
 - (d) En déduire l'expression de Y(t) puis de y(t). Tracer la solution $t \mapsto y(t)$ sur [0,2] avec Maxima.
- 3. On reprend cet exercice avec Scilab
 - (a) Ecrire un script permettant de calculer les solutions de (ED) avec les conditions initiales choisies sur l'intervalle de temps [0, 2].
 - (b) Représenter graphiquement la solution $t \mapsto y(t)$ obtenue. Comparer les deux approches Scilab/ Maxima.