Université de Versailles Saint-Quentin-En-Yvelines

L3, Optimisation et Applications (LSMA651)

Année 2011-2012

Enseignants: L. Dumas, J.P. Bartier, M.Z. Dauhoo http://dumas.perso.math.cnrs.fr/LSMA651.html

TD 5: METHODES DE DESCENTE

Exercice 1.

On munit \mathbb{R}^n du produit scalaire euclidien usuel, noté $\langle \cdot, \cdot \rangle$, la norme euclidienne associée étant notée $\| \cdot \|$. Pour tout $v \in \mathbb{R}^n$, $\| v \| = \sqrt{v^T v}$ sur \mathbb{R}^n . On définit la norme d'opérateur de M comme suit:

$$|| M || = \max_{v} \{ || Mv ||, || v || = 1 \}.$$

Montrer que les propriétés suivantes sont équivalentes pour une matrice M symétrique (h > 0 est fixé):

- (a) M est inversible et $||M^{-1}|| \le \frac{1}{h}$
- (b) ||Mv|| > h. $||v|| \forall v \in \mathbb{R}^n$
- (c) $|\lambda_i(M)| \ge h$ pour tout valeur propre $\lambda_i(M)$ de $M, i = 1, \dots, n$

Exercice 2.

On suppose que f est \mathbb{C}^2 sur \mathbb{R}^n . Montrer que

$$\forall (x,z) \in \mathbb{R}^n \times \mathbb{R}^n, \quad \nabla f(z) - \nabla f(x) = \int_0^1 \left[H(x + t(z - x)) \right] (z - x) dt,$$

où H(y) représente la matrice hessienne de f au point $y \in \mathbb{R}^n$.

Exercice 3.

Soit f C^2 sur \mathbb{R}^n et $x^* \in \mathbb{R}^n$ tel que $\nabla f(x^*) = 0$. On suppose que H(x) vérifie les conditions suivantes:

(1) il existe
$$h > 0$$
 tel que $||H^{-1}(x^*)|| \le \frac{1}{h}$.

(2) Il existe $\beta > 0$ et L > 0 tel que

$$||H(x) - H(x^*)|| \le L ||x - x^*||$$
 pour tout x vérifiant $||x - x^*|| \le \beta$.

Soient $||x-x^*|| < \gamma := \min(\beta, \frac{2h}{3L})$ et $x_N := x - H^{-1}(x)\nabla f(x)$. Montrer les inégalites suivantes:

(a)
$$||x_N - x^*|| \le ||x - x^*||^2 \frac{L}{2(h - L ||x - x^*||)}$$
.

(b)
$$||x_N - x^*|| \le ||x - x^*|| < \gamma$$
.

Exercice 4.

La méthode de Descente de Gradient

Soit la fonction $f(\mathbf{x})$ définie et C^1 sur \mathbb{R}^n . On sait que dans un voisinage d'un point $\mathbf{a} \in \mathbb{R}^n$, f diminue le plus rapidement si l'on passe dans la direction de la pente négative de f à \mathbf{a} , c'est à dire la direction $-\nabla \mathbf{f}(\mathbf{a})$.

On commence avec une estimation, x_0 , pour un minimum local de f et considère la séquence x_0, x_1, x_2, \cdots , où

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha \nabla \mathbf{f}(\mathbf{x}_i), i = 0, 1, 2 \cdots$$

tel que

$$f(x_0) \geq f(x_1) \geq f(x_2) \cdots$$

f(x) est définie comme suit:

$$\mathbf{f}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \begin{pmatrix} 6 & -2 \\ -2 & 6 \end{pmatrix} \mathbf{x} + \begin{bmatrix} -1 & -1 \end{bmatrix} \mathbf{x}$$

- (i) Quel est l'unique minimum (global) x^* de f?
- (ii) En commençant avec $\mathbf{x_0} = [0\ 0]^T$ et $\alpha = 0.1$, calculer les deux itérés suivants $\mathbf{x_1}$ et $\mathbf{x_2}$.
- (iii) Trouver la taille de pas maximum (α) pour que la méthode converge vers x^* quel que soit le point x_0 .