Université de Versailles Saint-Quentin-En-Yvelines

L3, Optimisation et Applications (LSMA651)

Année 2011-2012

Enseignants: L. Dumas, J.P. Bartier, M.Z. Dauhoo

http://dumas.perso.math.cnrs.fr/LSMA651

TD8: OPTIMISATION SOUS CONTRAINTES (part. 3)

Exercice 1. Résoudre graphiquement les problèmes suivants

- (a) $\min x + y$, $x \ge 0$, $y \ge 0$, $-2x + y \le 2$, $3x \le 10$, $2x y \le 5$,
- (b) $\min x + y$, $yx^2 2x \le 0$, $y \ge 5 x$.

Exercice 2. Résoudre (mathématiquement) les problèmes suivants

- (a) $\min 3x + 5y + 6z$, $x \ge 0$, $y \ge 0$, $z \ge 0$, $x + 2y + z \ge 4$, $x + 2y + 2z \ge 6$,
- (b) $\max x + y$; $y \le 0$, $y \ge x^3$,
- (c) $\max x + 2xy + 2y \frac{x^2}{2} \frac{y^2}{2}$; $x \ge 0$, $y \ge 0$, $x + y \le 1$,
- (d) $\min x^3 + y^2; x^2 + y^2 \le \frac{25}{16}, 2x + y + \frac{5}{4} \ge 0,$

Exercice 3 (examen 2010) Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie par

$$f(x,y) = (x-1)^2 + (y-2)^2.$$

- 1) Montrer que f est strictement convexe sur \mathbb{R}^2 .
- 2) On considère les trois problèmes d'optimisation suivant :

$$(\mathcal{P}_i)$$
 $\min_{(x,y)\in K_i} f(x,y), \quad i\in\{1,2,3\}$

- où $K_1 = \mathbb{R}^3$, $K_2 = \{(x, y) \in \mathbb{R}^2$, $x^2 + y^2 \le 10$ } et $K_3 = \{(x, y) \in \mathbb{R}^2$, $x^2 + \frac{1}{3}y^2 \le 1$ }.
- a) Expliquer pourquoi chaque problème (\mathcal{P}_i) admet une unique solution.
- b) Résoudre (\mathcal{P}_1) puis (\mathcal{P}_2) .
- c) Résoudre le problème (\mathcal{P}_3) .

Exercice 4 (examen 2010) on considère le problème d'optimisation :

$$(**) \qquad \min_{x+y \le 1} 7x^2 + 2y^2 + 7xy + 7x.$$

- 1) Montrer que (**) est un problème convexe.
- 2) Montrer que (**) admet une unique solution notée (a, b).
- 3) Ecrire les conditions (KKT) et trouver (a, b).

Exercice 5 (examen 2011) On considère la fonction u définie sur \mathbb{R}^2 par

$$u(x,y) = x^2 + y^2 + xy$$

On note

$$D = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 \le 1 \text{ et } x + y \ge 1\}$$

- 1. Montrer que u est strictement convexe sur \mathbb{R}^2 et qu'elle possède un unique minimum sur D.
- 2. En écrivant les relations de KKT, déterminer le point où u atteint son minimum sur D.

Exercice 6 (rattrapage 2011)

On considère la fonction u définie sur \mathbb{R}^2 par

$$u(x,y) = (x-1)^2 + (y-2)^2,$$

où a et b sont deux réels On note

$$D = \{(x, y) \in \mathbb{R}^2, \ y^2 - x^2 \le 1 \text{ et } x \ge 2\}$$

- 1. Montrer que u est strictement convexe sur \mathbb{R}^2 et qu'elle possède un unique minimum sur D.
- 2. En écrivant les relations de KKT, déterminer le point où u atteint son minimum sur D.

Exercice 7 (rattrapage 2011)

Soit la fonction de \mathbb{R}^2 dans \mathbb{R} définie par $f_{\alpha}(x,y):=x^2+\alpha y^2+xy+x$ pour un paramètre $\alpha\in\mathbb{R}$. On cherche à minimiser f_{α} sur

$$C = \{(x, y) \in \mathbb{R}^2, \ x + y \le 1\}$$

- a) Pour quelles valeurs de α f_{α} est-elle convexe sur \mathbb{R}^2 ? Résoudre le problème posé dans ce cas.
- b) Lorsque f_{α} n'est pas convexe, f_{α} possède-t-elle un minimum sur C?