Université de Versailles-Saint Quentin

Licence de Maths, Physique, Méca - 3^{ème} Année - Année 2017/2018

Analyse Numérique

http://dumas.perso.math.cnrs.fr/MA650.html

EXAMEN MA650 ANALYSE NUMERIQUE, 25 mai 2018

Exercice 1.

Soit $Q \in \mathcal{M}_n(\mathbb{R})$ une matrice orthogonale réelle $({}^tQQ = I)$ et $b \in \mathbb{R}^n$. Soit A = I - Q. On suppose que $\lambda = 1$ n'est pas valeur propre de Q, de sorte que la matrice A = I - Q est inversible.

On rappelle que toute matrice orthogonale, est diagonalisable sur $\mathbb C$ et que ses valeurs propres sont toutes de module 1.

1. On s'intéresse à la méthode itérative associée à la décomposition suivante de A:

$$M = (1 + \alpha)I, \quad N = \alpha I + Q.$$

- (a) Montrer que pour $\alpha = 0$ la méthode n'est pas convergente.
- (b) Montrer que la méthode est convergente pour tout $\alpha > 0$.
- 2. À présent on fait varier le coefficient α à chaque itération. On fait l'hypothèse que la suite α_k est bornée

$$\exists d \geq c > 0, \quad c \leq \alpha_k \leq d \quad \forall k \in \mathbb{N}.$$

- (a) On décompose l'erreur $e_k = x_k x$ sur la base des vecteurs propres de Q sous la forme $e_k = \sum_{j=1}^n a_j^k v_j$. Déterminer une relation de récurrence pour la suite $k \mapsto a_j^k$. Calculer a_j^k en fonction de a_j^0 et des coefficients du problème.
- (b) Montrer que la méthode est convergente.

Exercice 2.

- 1. Montrer que le polynôme d'interpolation d'une fonction paire f relativement aux zéros du polynôme de Tchebichev T_5 est pair.
- 2. Soit la fonction définie sur [-1,1] par $f(x) = \frac{1}{1+x^2}$. En posant $u = x^2$, montrer que le calcul du polynôme d'interpolation P(x) de f relativement aux zéros de T_5 peut se ramener au calcul d'un polynôme d'interpolation q(u) de degré plus petit.
- 3. Donner une expression de q(u) puis en déduire une expression de P(x).

Exercice 3.

On considère une méthode de quadrature (M) sur [0,1] telle que

$$\int_0^1 f(u)du \simeq af(0) + bf(\frac{1}{3}) + cf(\frac{1}{2})$$

- 1. Déterminer les coefficients a b et c pour que la méthode soit d'ordre 2.
- 2. On considère la méthode de Runge Kutta, définie par le tableau :

$$\begin{array}{c|ccccc} & 0 & | & 0 \\ (M2) & \frac{1}{3} & | & \frac{1}{3} \\ (M3) & \frac{1}{2} & | & 0 & \frac{1}{2} \\ (M) & 1 & | & a & b & c \end{array}$$

- (a) Décrire les méthodes de quadrature (M2) et (M3) et donner leur ordre.
- (b) Ecrire l'algorithme définissant la méthode de Runge Kutta définie par ce tableau.
- (c) La méthode ainsi définie est-elle au moins d'ordre 2?