TD 1, Optimisation: Méthodes de gradient

Exercice 1 (examen 2015)

1. Représenter graphiquement quelques lignes de niveau de la fonction

$$f(x,y) = 2(x-1)^2 + y^2 + 1$$

puis représenter pour un point sur une des lignes de niveau, le gradient en ce point et un exemple de direction de descente.

2. Soit f une fonction différentiable de \mathbb{R}^n dans \mathbb{R} et $x \in \mathbb{R}^n$. On suppose que $d \in \mathbb{R}^n$ est tel que

$$||\nabla f(x) + d|| \le ||\nabla f(x)||$$

Montrer que d est une direction de descente de f en x.

3. Soit f une fonction différentiable et <u>convexe</u> de \mathbb{R}^n dans \mathbb{R} . Soient x et y dans \mathbb{R}^n tels que f(y) < f(x). Montrer que y - x est une direction de descente de f en x.

Exercice 2

On considère f une fonction C^1 de \mathbb{R}^n dans \mathbb{R} , telle que $\lim_{||x||\to +\infty} f(x)=+\infty$. On note g la fonction gradient de f définie de \mathbb{R}^n dans \mathbb{R}^n . On suppose que g est Lipschitzienne sur tout ensemble $S_{x_0}=\{x\in\mathbb{R}^n, f(x)\leq f(x_0)\}$.

- 1. Montrer que f possède un minimum global x^* pour lequel $g(x^*) = 0$.
- 2. On cherche à construire une suite $(x_k)_{k\in\mathbb{N}}$ convergeant vers un minimum (local ou global) de f. On suppose qu'il est possible de définir correctement celle-cià partir de la donnée de $x_0 \in \mathbb{R}^n$ quelconque et de la relation :

$$x_{k+1} = x_k + t_k d_k$$

où d_k désigne une direction de descente (c'està dire telle que $(d_k, g(x_k)) < 0$) et t_k le pas dans cette direction supposé satisfaire la conditions suivante :

$$q(t_k) \le q(0) + m_1 t_k q'(0)$$
 et $q'(t_k) \ge m_2 q'(0)$

où on a noté $q(t)=f(x_k+td_k)$ et où m_1 et m_2 sont deux réels tels que $0< m_1< m_2<1$.

Donner un exemple graphique des valeurs de t_k admissibles dans le cas d'une fonction à une variable tracée 'à la main'.

3. On peut montrer que la méthode de descente ainsi construite est convergente vers un point critique de f lorsque $d_k = -g(x_k) = -g_k$ (direction du gradient).

Proposer un algorithme permettant de construire la suite x_k , c'està dire en particulier de déterminer un réel t_k convenable.