http://dumas.perso.math.cnrs.fr/MINT-optim.html

CC1: optimisation

Exercice 1

On considère la fonction u définie sur \mathbb{R}^2 par

$$u(x,y) = x^2 + y^2 + xy$$

On note

$$D = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 \le 1 \text{ et } x + y \ge 1\}$$

- 1. Montrer que u est strictement convexe sur \mathbb{R}^2 et qu'elle possède un unique minimum sur D.
- 2. En écrivant les relations de KKT, déterminer le point où u atteint son minimum sur D.

Exercice 2

Soit J une fonction de \mathbb{R}^n dans \mathbb{R} telle que J est C^1 , strictement convexe. On suppose qu'il existe $x^* \in \mathbb{R}^n$ tel que

$$\nabla J(x^*) = 0$$

- 1. Montrer que x^* est un minimum global de la fonction J et qu'il est unique (on justifiera ces deux assertions).
- 2. On considère la méthode de descente $(x_k)_{k\in\mathbb{N}}$ à pas optimal, c'est à dire telle que $x_0\in\mathbb{R}^n$ quelconque et

$$x_{k+1} = x_k - \alpha_k \nabla J(x_k)$$

avec α_k étant choisi tel que

$$q(\alpha_k) = \min_{\alpha \in \mathbb{R}_+^*} q(\alpha) \tag{1}$$

avec

$$q(\alpha) = J(x_k - \alpha \nabla J(x_k))$$

Montrer que α_k est correctement défini avec la relation (1) et qu'on a bien $J(x_{k+1}) < J(x_k)$ si $x_k \neq x^*$.

3. Calculer $q'(\alpha)$. En déduire que $\langle \nabla J(x_{k+1}), \nabla J(x_k) \rangle = 0$

Exercice 3

On considère le script Scilab de minimisation sans contrainte suivant qu'on applique à une fonction nommée f de gradient gradf :

```
alphainit=0.5
a=0.001; b=0.9;
lambda=1.5;
//
X0 = [0; 0];
X=X0;
for i=1:Niter
  d=-gradf(X)
  alpha=alphainit;qpr=d'*gradf(X);
  tg=0;td=0;
  while (f(X+alpha*d)>f(X)+a*alpha*qpr) | (alpha*(d'*gradf(X+alpha*d))<b*qpr)
         f(X+alpha*d)>f(X)+a*alpha*(qpr) then
     td=alpha;
    else
     tg=alpha;
    end
    if td==0 then
       alpha=lambda*alpha
       alpha=(tg+td)/2
    end
  end
  X=X+alpha*d;
disp('valeur obtenue:');disp(X)
```

où le caractère | désigne l'opérateur 'ou'. On admet que l'instruction while ne bouclera jamais indéfiniment.

- 1. Que calcule l'instruction qpr=d' *gradf (X) ?
- 2. Rappeler la condition d'Armijo. Est-elle toujours vérifiée ici?
- 3. Sur l'exemple de la fonction de Rosenbrock :

$$f(x,y) = 100(y - x^2)^2 + (x - 1)^2$$

donner le résultat de l'algorithme au bout de une itération (Niter=1).