TP 3 Optimisation: algorithmes génétiques

L'objectif de cette séance est de programmer un algorithme génétique pour la minimisation globale de fonctions à n variables avec le logiciel Scilab.

Exercice préliminaire

On considère la fonction de Rastrigin à deux dimensions :

$$f(x_1, x_2) = x_1^2 + x_2^2 - \cos(2\pi x_1) - \cos(2\pi x_2) + 2$$

Déterminer l'ensemble des minimas locaux et globaux de cette fonction.

Les trois exercices suivants s'intéressent aux trois opérateurs stochastiques issus de la théorie de Darwin : sélection, croisement et mutation. Pour chacun d'eux, on applique ces opérateurs à une matrice A de taille $N_{pop} \times (n+1)$ où chaque ligne de la matrice représente un individu I dans \mathbb{R}^n dont la valeur correspondante f(I) par la fonction à optimiser est indiquée dans la dernière colonne.

Exercice 1 : opérateur de sélection par tournoi

Classer les individus par ordre croissant de santé (notion à définir) et construire une nouvelle matrice A_{sel} avec le principe du tournoi : on prend deux individus au hasard et on choisit le meilleur des deux. On répète cette opération N_{pop} fois.

Exercice 2 : opérateur de croisement

A partir de la matrice A, définir une nouvelle matrice A_{cros} de la manière suivante : on sélectionne au hasard $\frac{N_{pop}}{2}$ couples d'individus (I_1,I_2) et on construit pour chaque couple deux nouveaux éléments aléatoirement sur le segment $[I_1,I_2]$: $I_1'=rI_1+(1-r)I_2$ et $I_2'=(1-r)I_1+rI_2$ où r est un nombre aléatoire entre 0 et 1. Les nouvelles valeurs $f(I_1')$ et $f(I_2')$ sont également calculées.

Exercice 3 : opérateur de mutation

A partir de la matrice A, on définit une nouvelle matrice A_{mut} de la manière suivante : pour chaque élément $I \in \mathbb{R}^n$, on définit un nouvel élément I' tel que $I' = I + \sigma$ où σ est une variable aléatoire suivant une loi uniforme sur $[-r,r]^n$. La nouvelle valeur f(I') est également calculée.

Exercice 4

Assembler les trois opérateurs précédents pour former un algorithme génétique dont les paramètres sont les suivants : N_{pop} , N_{gen} (nombre de générations), p_c (probabilité de croisement dans [0,1]), p_m (probabilité de mutation dans [0,1]) et r.

Appliquer cet algorithme à la recherche du minimum global de la fonction de Rastrigin.