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Introduction

Introduction

The systematic quantification of the uncertainties affecting the dynamics of a
system and the characterization of the uncertainty of its outcomes is critical
for engineering design and analysis, where risks must be reduced as much as
possible.

Uncertainties stem naturally from our limitations in measurements,
predictions and manufacturing, and we can say that any dynamical system
used in engineering is subject to some of these uncertainties.

This lecture presents an overview of the mathematical framework used in
Uncertainty Quantification (UQ) analysis and introduces the use of
Polynomial Chaos approximation in UQ.

First, a very simple toy problem in UQ will be studied in order to introduce
the mathematical tools. Then, an application of UQ in medicine wil be
presented.
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Uncertainty quantification : a toy problem

Uncertainty quantification : a toy problem

Before studying a real problem, let study a very simple situation : consider
the model made of a scalar linear ODE :

y ′ = −ay

with a given initial condition
y(0) = 1

In this model, a is a parameter known with a finite accuracy (for instance a is
uniformly distributed in [1, 3]) and the output of the model is the value

S = y(1)

.

The question is : can we define (or approximate) the uncertainty at the exit
of the model given the uncertainty at the input ?
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Uncertainty quantification : a toy problem

Uncertainty quantification : a toy problem

To study this problem, the following mathematical notions are now presented :

Basic notions in probability and statistics

The naive Monte Carlo approach

The best polynomial approximation (in the appropriate L2 norm)

The orthogonal basis of polynomials (case of Legendre polynomials)

The Gauss-Legendre quadrature method

A Scilab implementation of these tools will be proposed to solve the toy problem.
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An application of UQ in medicine

The medical application

The numerical simulation of blood flow in the human arterial tree is a very
complex problem, as it involves, in the more general approach, 3D
fluid/structure simulations.
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An application of UQ in medicine

The medical application

In order to reduce the computational cost, a simplified fluid/structure model
for the blood flow in the arterial tree is used ( direct problem).

The parameters are patient-specific and are obtained with the help of a non
invasive, non costly experimental device.

An uncertainty quantification for the patient-specific parameters is presented.
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The hemodynamic model

The 1D model
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For a given artery, the domain Ωt is assumed to be cylindrical along the Oz
axis and of constant length L.

A simplified fluid/structure interaction model is derived on this geometry.

References : Formaggia, Nobile, Quarteroni (2001),Sherwin et al. (2003),
Gerbeau et al. (2005), Stergiopoulos et al. (2009).
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The hemodynamic model

The 1D model : the equations

For a given artery, the two unknowns A(t, z) (cross section) and Q(t, z)
(mean flux) satisfy the following set of equations :
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+
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= 0
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An elastic linear law closes the system :

P − Pext = β(z)
(√

A(z , t) −
√

A0(z)
)
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The hemodynamic model

The 1D model : the discretization scheme

The equations are discretized in time in their conservative form by using a
second order Taylor Galerkin scheme :
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The spatial discretization is then done by using linear finite elements on a
subdivision of [0, L].

As λ1 > 0 and λ2 < 0, the system is completed by two appropriate boundary
conditions, one at each end for the characteristic variables W1 and W2.

After some algebraic manipulations, it can be seen that a pressure profile can
be imposed at the entrance.
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The hemodynamic model

The 1D model : network and boundary conditions

At a bifurcation in a network of arteries, three additional conditions are
imposed (conservation of mass and two pressure conditions).

(A2,Q2)

(A3,Q3)

(A1,Q1)

(R2)

(R3)

Resistance conditions are put at the exit to simulate the effect of the
downtream resistance network.
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The hemodynamic model : UQ

Uncertainty quantification

Once the patient-specific parameters of the model have been found, the
robustness of these parameters must be studied.

A non intrusive method called uncertainty quantification by polynomial chaos
can been chosen.

It consists in choosing an uncertainty probability distribution function for n
parameters and to study the uncertainty of a a well chosen quantity at the
exit.

The chosen quantity at the exit, here the pulse pressure at position x , PP(x),
can be decomposed in an orthonormal polynomial basis of the form :

PP(x , ω) =
M−1∑
j=0

aj(x)ψj(ξ1(ω), ξ2(ω), ..., ξn(ω))
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The hemodynamic model : UQ

Uncertainty quantification

The deterministic coefficients are obtained by a non intrusive method in the
following way :

aj(x) =
< PP(x , .), ψj(ξ(.)) >

< ψ2
j (ξ(.)) >

for 1 ≤ j ≤ M = (n+p)!
n!p! .

A Gauss quadrature can be used for the computation of the
multi-dimensional integral.

In case of a large n, a sparse grid interpolation technique is required to
reduce the computational cost.
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Numerical results

Numerical reconstruction of an arterial network from
echotraking (patient P1)

The arterial network studied here, is made of 7 arteries of the lower limb.

 1− External illiac

 3− Deep 

      femoral

 4− Popliteal 

 7− Anterior tibial

 6− Posterior tibial

5− Descending 

genicular

 2− Femoral

The echotracking measurements consist in 4 velocity profiles (arteries 1,2 4
and 6) and 3 cross section profiles (arteries 1, 2 and 4).

The cross section measurement at artery 1 is taken as the entrance condition.
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Numerical results

The ’patient P1’ optimal parameters

Patient P1 Patient P2

Artery A0 (cm2) c0 (m/s) R A0 (cm2) c0 (m/s) R
1 : EI 0.53 4.99 - 0.53 6.57 -
2 : Fem 0.47 11.96 - 0.38 11.80 -
3 : DF 0.27 7.39 0.48 0.32 7.58 0.7
4 : Po 0.40 10.51 - 0.34 8.85 -
5 : Ge 0.32 9.93 0.42 0.22 13.47 0.33
6 : PT 0.23 11.61 0.95 0.24 11.67 0.68
7 : AT 0.22 9.91 0.73 0.13 14.12 0.97

Table: The mean optimal parameters for Patients P1 and P2 after 10 CMA-ES runs.
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Numerical results

Robustness study of the ’patient P1 model’

Three uncertainty analysis for patient P1 have been carried out :

2 studies on local parametric uncertainty, namely the section A0,k and pulse
wave velocity at rest c0,k for artery 3 and 6 respectively.
1 study on the effect of external parametric uncertainty, namely peripheral
resistances (Rm)m∈{3,5,6,7} at the exit.

The random parameters for this three cases are thus respectively (A0,3, c0,3),
(A0,6, c0,6) and (R3,R5,R6,R7).

The type of uncertainty that has been chosen is of uniform type with a
±25% variation around the deterministic value.

A polynomial chaos approximation of order 3 is chosen. A Gauss (respectively
sparse grid) quadrature have been used for case 1 and 2 (respectively 3).
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Numerical results

Robustness study of the ’patient P1 model’

Artery denomination A0,3, c0,3 (N=2) A0,6, c0,6 (N=2) R{3,5,6,7} (N=4)

1 : external iliac 1.37 0.17 1.91
2 : femoral 2.90 5.56 10.44
3 : deep femoral 2.86 1.58 4.71
4 : popliteal 2.58 5.74 14.38
5 : genicular 1.95 6.02 14.46
6 : posterior tibial 4.37 7.76 16.26
7 : anterior tibial 3.96 3.64 15.73

Table: The pulse pressure (PP) coefficient of variation (in percentage) for each artery
and for the three UQ studies.
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Numerical results

Robustness study of the ’patient P1 model’

 c03

 A03

 c03*A03
 External Illiac (1): CV = 1.37 %

 c03
 A03

 c03*A03
Deep Femoral (3): CV = 2.86 %

 c03

 A03
 c03*A03

 Femoral (2): CV = 2.90 %

 c03

 A03

 c03*A03
 Popliteal (4): CV = 2.58 %

 c03  A03

 c03*A03

 Descending Genicular (5): CV = 1.95 %

 c03

 A03
 c03*A03

 Posterior Tibial (6): CV = 4.37 %

 c03

 A03

 Anterior Tibial (7): CV = 3.96 %

Figure: Patient P1 : First and second order Sobol coefficients contribution to PP
uncertainty for the first UQ computation.
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Numerical results

Robustness study of the ’patient P1 model’

 c03

 A03

 c03*A03
 External Illiac (1): CV =0.17 %

 c03

 A03
 c03*A03

Deep Femoral (3): CV = 1.5%

 c03

 A03
 c03*A03

 Femoral (2): CV = 5.56 %

 c03

 A03
 Popliteal (4): CV = 5.74 %

 c03

 c03*A03

 Descending Genicular (5): CV = 6.02 %

 c03

 c03*A03

 Posterior Tibial (6): CV = 7.76 %

 c03
 A03

 c03*A03

 Anterior Tibial (7): CV = 3.64 %

Figure: Patient P1 : First- and second-order Sobol coefficients contribution to PP
uncertainty for the second UQ computation.
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Numerical results

Robustness study of the ’patient P1 model’

 R3

 Rj*Rj
 External Illiac (1): CV =1.91 %

 R3

 R5
 R6

 R7

 Ri*Rj

Deep Femoral (3): CV =4.71%
 R3

 R5

 R6
 R7

 Ri*Rj

 Femoral (2): CV =10.44 %

 R3
 R5

 R6
 R7

 Ri*Rj

 Popliteal (4): CV =14.38 %

 R3
 R5

 R6
 R7

 Ri*Rj

 Descending Genicular (5): CV =14.46 %

 R3 R5

 R6  R7

 Ri*Rj

 Posterior Tibial (6): CV =16.26 %
 R3

 R5

 R6
 R7

 Ri*Rj

 Anterior Tibial (7): CV =15.73 %

Figure: Patient P1 : First- and second-order Sobol coefficients contribution to PP
uncertainty for the third UQ computation.
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Numerical results
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