Short Course: Multidisciplinary optimization and industrial applications 2023 Laurent Dumas (Versailles University, France) &			
Muhammad Zaid Dauhoo (University of Mauritius)			
Day 1 Wednesday 11/01/2023 Venue: RBLT			
<i>Session 1</i> : 13.00-14.30 (MZD & LD) Introduction, motivation, Notion of optimization with or without constraints			

Ð optionisation finding the maximum or the minimum of a given function f(x) $f(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3)$ difformable functions. $\underline{min} f(\mathbf{x}) ; \quad [max g(\mathbf{x})]'$ $m_{in} - f(x)$ f(x) global maximum 4 ocal maximum 2 0 fixe) local minimum fix global minimum on the interval [In, I,], (2) a local minimum of f(x) occurs min $f(a) = f(x_a) \simeq -3$ at Xx provided thereasts NELIO,XJ Brall x E Ex, x, I, fix) = fixo as interval I such that XYEI and for all XEI, lower when I & [x, x,], $f(x) = f(x_x)$ f(x) is not necessoarily >, f(xx) $\mathfrak{a}: f(\mathfrak{x}_{\theta}) < f(\mathfrak{x}_{\theta})$ 3 Can a global man (max) be a local min (max)? YESI A local men is not necessarily a global min. global ma => local min local nun of global min. (\mathbf{G}) Jm(z) Can we have more than I global minimum (rap. mar.) 0.5 Yes, however the value of fix) at each of the global minim car is the

2.2 Hessian

Let $f(x_1, x_2, x_3) = x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2$. The Hessian matrix related to $f(x_1, x_2, x_3)$ is given by

$$\nabla^2 f(x_1, x_2, x_3) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{pmatrix}$$

Definition 2.7 Let f be a function of two or more variables with continuous first order and second order derivatives on an open and convex set S. let the Hessian of f be denoted by H(X). Then

0<2 / 0<2 / 0<1 / 0<1 / 0<1 /

(i) f is concave if and only if H(X) is negative semidefinite for $X \in S$.

- (ii) If H(X) is negative definite for $X \in S$, then f is strictly concave. (iii) f is convex if and only if H(X) is positive semidefinite for $X \in S$. (iv) f is strictly convex if and only if H(X) is positive definite for $X \in S$.

Definition

A set $D \subset \mathbb{R}^2$ is:

- bounded if it can be enclosed in a circle;

- closed if it includes its boundary (denoted by ∂D);

We say D is compact if it is both closed and bounded.

Figure 1: Closedness, boundedness and compactness

A Few Useful Theorems

Theorem 1

If $f(\mathbf{x})$ is continuous on a compact set $D \subset \mathbb{R}^n$, then f has global extrema there.

Theorem 2

If $f(\mathbf{x})$ is differentiable on a compact set $D \subset \mathbb{R}^n$, then the extrema of f must occur: Either - At critical points within D; OR - On the boundary ∂D .

Theorem 3

Let $f(\mathbf{x})$ be a continuous function defined on all of \mathbb{R}^n .

If $f(\mathbf{x})$ is coercive, then $f(\mathbf{x})$ has a global minimizer.

Furthermore, if the first partial derivatives of $f(\mathbf{x})$ exist on all of \mathbb{R}^n ,

then any global minimizers of $f(\mathbf{x})$ can be found among the critical points of $f(\mathbf{x})$.

Optimisation Taylor Series 01/01/2023

1. Second order Taylor series based expansion of a multivariable function Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$, be of class C^2 on the open interval D. Let $x^*, x \in D$ such that $[x^*, x] \subset D$ and there exists $z \in x^*$, x such that

$$f(x) = f(x^*) + \nabla f(x^*) \cdot (x - x^*) + \frac{1}{2} (x - x^*) \cdot \nabla^2 f(z) (x - x^*)$$

where

$$\nabla f(.) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(.) \\ \vdots \\ \frac{\partial f}{\partial x_n}(.) \end{pmatrix}, \nabla^2 f(.) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(.) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(.) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(.) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(.) \end{pmatrix}$$

2. Alternative formulation of the second order Taylor series based expansion of a multivariable function

For all $x \in V_r(x^*) \subseteq D$,

$$f(x) = f(x^*) + \nabla f(x^*) \bullet (x - x^*) + \frac{1}{2} (x - x^*) \cdot Hf(x^*) (x - x^*) + ||x - x^*||^2 \varepsilon (x - x^*),$$

where ε is a function such that $\lim_{h\to 0}\varepsilon(h)=0$

Lecture Example 08/06/2022

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ and defined as follows:

$$f(x,y) = x^4 + y^4 - 4xy \quad 4xy.$$

and the set:

$$C = \left\{ (x, y) : |x| \le \sqrt{2}, |y| \le \sqrt{2} \right\}$$

(i) Show that the problem given by

$$\min_{(x,y)\in C} f(x,y)$$

has at least one solution.

- (ii) Find the critical point(y) of f(x, y)
- (iii) Determine the minimum point(s) of f(x, y) on \mathbb{R}^2 , stating whether there are local or global minimum points.

part of the answer to part (iii)

$$\nabla^2 f(1,1) = \begin{pmatrix} 12 & -4 \\ -14 & 12 \end{pmatrix};$$

Similarly, trace $\nabla^2 f(1, 1) > 0$ and $|\nabla^2 f(1, 1, 1)| > 0$,

thus $\nabla^2 f(1,1)$ has 2 stictly positive eigenvalues and we saw that it is also the case with $\nabla^2 f(-1,1)$.

f(1,1) = f(-1,-1) = -2 < 0

Thus, the square $[-\sqrt{2}, \sqrt{2}] \times [-\sqrt{2}, \sqrt{2}]$ admits at least a minimum of f(x, y), as it is compact.

Therefore (1,1) and (-1,-1) are the only 2 minima of f(x,y) in C and thus both are global minima in the square for f(x,y).

Fig.(1) shows the curve $x^6 + y^6 = 1$. It is required to locate the point $P(x^*, y^*)$, on the curve, which is closest to the origin. Prove that $P(x^*, y^*)$ exists and explain how it is calculated.

Figure 1: graph of $x^6 + y^6 = 1$

Multidisciplinary optimization and industrial applications

Short course on Multidisciplinary optimization and industrial applications

Optimisation - Introductory Examples Prof MZ Dauhoo and Prof L Dumas

1 Optimisation

1.1 Unconstrained Optimisation

Let (x_0, y_0) be a critical point of a function, f which is twice continuously differentiable in \mathcal{R}^2 . The nature of the critical point can be determined as follows:

$\det(H_f(x_0, y_0))$	$\partial_{xx}f\left(x_0, y_0\right)$	Nature of (x_0, y_0)
+	+	minimum
+	_	maximum
—		saddle point
0		no conlcusion

1.2 Constrained Optimisation

We are looking for the extrema of the function f(x, y) under the constraint g(x, y) = k. This means that we are looking for the extrema of f(x, y) when the point (x, y) belongs to the contour line g(x, y) = k. In Figure (1.2), we see this curve as well as several contour lines of f. These have the equation f(x, y) = c for c = 7, 8, 9, 10, 11.

Optimise f(x, y) under the condition g(x, y) = k means to find the largest (or smallest) value of c such that the contour line f(x, y) = c intersects the curve g(x, y) = k.

For this to take place, the two curves must have the same tangent line. This means that the gradients are parallel, that is, there exists $\lambda \in \mathcal{R}$ such that $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$, where λ is the LAGRANGE multiplier.

Optimise f(x, y) under the constraint g(x, y).

We construct the Lagrangian as follows:

 $\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y)$, where λ is the Lagrange multiplier.

For the function f to exhibit extremum, we require $\nabla \mathcal{L} = 0$.

$$\nabla \mathcal{L} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial x} \\ \frac{\partial \mathcal{L}}{\partial y} \\ \frac{\partial \mathcal{L}}{\partial \lambda} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(1)

Solving the above system, we get (x_0, y_0, λ_0) as the critical point.

In order to determine the nature of the critical point, we calculate the Hessian of the Lagrangian and determinine its nature as follows:

Let (x_0, y_0, λ_0) be a critical point of a function, f which is twice continuously differentiable in \mathcal{R}^2 . The nature of the critical point can be determined as follows:

$\det(H_{\mathcal{L}}(x_0, y_0, \lambda_0))$	$\partial_{xx}\mathcal{L}\left(x_{0},y_{0},\lambda_{0} ight)$	Nature of (x_0, y_0, λ_0)
+	+	minimum
+	—	maximum
≤ 0		no conlcusion

Example 1:

Find the extrema and the corresponding nature of the function $f(x, y) = 5x^2 + 6y^2 - xy$ under the constraint x + 2y = 24.

Figure 1: Sketch of the function f(x, y) and the constraint.

We construct the Lagrangian as follows:

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y), = 5x^2 + 6y^2 - xy - \lambda(x + 2y - 24).$$
(2)

For the function f to exhibit extremum, we require $\nabla \mathcal{L} = 0$.

$$\nabla \mathcal{L} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial x} \\ \frac{\partial \mathcal{L}}{\partial y} \\ \frac{\partial \mathcal{L}}{\partial \lambda} \end{pmatrix} = \begin{pmatrix} 10x - y - \lambda \\ 12y - x - 2\lambda \\ -x - 2y + 24 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(3)

Solving the above system, we get

$$x = 6$$
, $y = 9$ and $\lambda = +51$.

In order to determine the nature of the critical point, we calculate the Hessian of the Lagrangian as follows:

$$H_{\mathcal{L}}(x,y) = \begin{pmatrix} \frac{\partial^2 \mathcal{L}}{\partial x^2} & \frac{\partial^2 \mathcal{L}}{\partial x \partial y} \\ \\ \frac{\partial^2 \mathcal{L}}{\partial x \partial y} & \frac{\partial^2 \mathcal{L}}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 10 & -1 \\ \\ -1 & 12 \end{pmatrix}$$
(4)

Since det $(H_{\mathcal{L}}(x,y)) = 119 > 0$ and $\frac{\partial^2 \mathcal{L}}{\partial x^2} = 10 > 0$, therefore the critical point (6,9) is a minimum.