Short Course: Multidisciplinary optimization and industrial applications 2023
Laurent Dumas (Versailles University, France)
\&
Muhammad Zaid Dauhoo (University of Mauritius)

Day 1 Wednesday 11/01/2023
Venue: RBLT
Session 1: 13.00-14.30 (MZD \& LD)
Introduction, motivation, Notion of optimization with or without constraints
optionisation
finding the maximum or the minimum of a given function $f(x)$
$f\left(x_{1}, x_{2}, x_{3}\right)$
ditterchable functions
min $f(x) ; \quad i \operatorname{minax} g(x) ;>(\min -g(x) i$

(2) a local minimum of $f(x)$ occurs at X_{γ} provided theresuists an interval I such that $x_{\gamma} \in I$ and for all $x \in I$,

$$
f(x) \geqslant f\left(x_{\gamma}\right)
$$

on the interval $\left[x_{0}, x_{1}\right]$,

$$
\begin{aligned}
& \min _{x \in\left[x_{0}, x,\right]} f(x)=f\left(x_{\alpha}\right) \simeq-3 \\
& \text { for all } x \in\left[x_{\beta}, x_{\alpha}\right], f(x) \geqslant f\left(x_{\gamma}\right)
\end{aligned}
$$

however when $x \notin\left[x_{\beta}, x_{1}\right]$, $f(x)$ is not necesserarily $\geqslant f(x \gamma)$存: $f\left(x_{\theta}\right)<f\left(x_{\gamma}\right)$
(3) Con a global man (max) be a local noun (mar)? YES!
A local man is not ne cessarily a global min.
global min \Rightarrow local min
local min $\#$ global min.

con we have more than 1 global minimum [resp mas.)
yes, hoverer the value $f f(x)$ at each of the global mininsen is the Jame.

each of the global mininsea is the same.

$$
\begin{aligned}
& \text { for all } x \in[-2 \pi, 2 \pi] \\
& \sin (x) \geqslant-1=\sin (\pi / 2)=\sin (3 \pi / 2) \\
& f(x) \geqslant f(-\pi / 2)=f(3 \pi / 2), \text { for } a 11 x \in[-2 \pi, 2 \pi]
\end{aligned}
$$

$f(x)$ has 2 global minuita on $[-2 \pi, 2 \pi]$

(6)

$$
\begin{aligned}
& \max f(x)=f_{1}=f\left(x_{1}\right) \text { unsconstrauned } \\
& x \in \mathbb{R} \\
& \text { ophrisation } \\
& \text { perlm } \\
& \max f(x)=f_{3}=f\left(x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \min _{(x, y) \in \mathbb{R}^{2}} f(x, y)=f\left(x, y_{\alpha}\right) \\
& \text { Uncowtraned } \\
& \text { ophusution plta } \\
& \min _{(x, y) \in J} f(x, y)=f\left(x_{c}, y_{c}\right) \\
& \begin{array}{l}
\text { Min, } f(x, y)=f\left(x_{c}, y_{c}\right) \text { - Ophmisahon phen } \\
\sqrt{\left(x-x_{c}\right)^{2}+\left(y-y y_{c}\right.} \leq r
\end{array}
\end{aligned}
$$

1 Convex Sets

1.1 Lines and line segments

Suppose $x_{1} \neq x_{2}$ are two points in \mathbb{R}^{n}. Then, points of the form

$$
y=\lambda x_{1}+(1-\lambda) x_{2} \text { where } \lambda \in \mathbb{R},
$$

form the line passing through x_{1} and x_{2}. The parameter value $\lambda=0$ corresponds to $y=x_{2}$,
and the parameter value $\lambda=1$ corresponds to $y=x_{1}$. Values of the parameter λ between 0
and 1 correspond to the (closed) line segment between x_{1} and x_{2}. (Boyd and Vanden)
1.2 Convex Sets
Definition 1.1 Let C be a given set, $C \subset \mathbb{R}^{2},(x, y) \in C$ and $\left(x^{\prime}, y^{\prime}\right) \in C$. C is convex if and only if

$$
\lambda(x, y)+(1-\lambda)\left(x^{\prime}, y^{\prime}\right) \in C \quad \text { for } \quad 0<\lambda<1 .
$$

Figure 1: A convex set

Figure 2: A non-convex set

The point $\alpha=\lambda(x, y)+(1-\lambda)\left(x^{\prime}, y^{\prime}\right)$ is said to be a linear combination of points A and B as shown in Figure 1.

$$
\text { for any } \alpha \in l \text {, }
$$

$$
\alpha\left(x_{\alpha}, y_{\alpha}\right)
$$

$$
\text { there exists } 0 \leq \lambda \leq 1 \text { such that }
$$

$$
\left(x_{\alpha}, y_{\alpha}\right)=\lambda(x, y) f(1-\lambda)\left(x^{\prime}, y^{\prime}\right)
$$

$$
\left(x_{\beta}, y_{\beta}\right)=\lambda_{1}(x, y)+\left(1-\lambda_{1}\right)\left(x^{\prime} y^{\prime}\right)
$$

Convex linear Conhnation

$$
12, R^{2},\left(\Omega^{3}, \ldots\right)
$$

$$
R^{11}
$$

Cons Lets

Page 9

Figure 9: A concave function

2.2 Hessian

Let $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}$.
The Hessian matrix related to $f\left(x_{1}, x_{2}, x_{3}\right)$ is given by

$$
\nabla^{2} f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \boldsymbol{\partial} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{f} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} \\
\frac{\partial^{2} f}{} f^{2} \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} & \frac{1}{\partial x_{3}^{2}}
\end{array}\right)
$$

Definition 2.7 Let f be a function of two or more variables with continuous first order and second order derivatives on an open and convex set S. let the Hessian of f be denoted by $H(X)$. Then
(i) f is concave if and only if $H(X)$ is negative semidefinite for $X \in S$.
(ii) If $H(X)$ is negative definite for $X \in S$, then f is strictly concave
$\{$
(iii) f is convex if and only if $H(X)$ is positive semidefinite for $X \in S$.
(iv) f is strictly convex if and only if $H(X)$ is positive definite for $X \in S$.

$$
\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}>0
$$

Definition

A set $D \subset R^{2}$ is:

- bounded if it can be enclosed in a circle;
- closed if it includes its boundary (denoted by ∂D);

We say D is compact if it is both closed and bounded.

Bounded, not closed

Closed, not bounded

Figure 1: Closedness, boundedness and compactness

A Few Useful Theorems

Theorem 1

If $f(\mathbf{x})$ is continuous on a compact set $D \subset \mathbb{R}^{n}$, then f has global extrema there.

Theorem 2

If $f(\mathbf{x})$ is differentiable on a compact set $D \subset \mathbb{R}^{n}$, then the extrema of f must occur:
Either

- At critical points within D;

OR

- On the boundary ∂D.

Theorem 3

Let $f(\mathbf{x})$ be a continuous function defined on all of \mathbb{R}^{n}.
If $f(\mathbf{x})$ is coercive, then $f(\mathbf{x})$ has a global minimizer.
Furthermore, if the first partial derivatives of $f(\mathbf{x})$ exist on all of \mathbb{R}^{n},
then any global minimizers of $f(\mathbf{x})$ can be found among the critical points of $f(\mathbf{x})$.

1. Second order Taylor series based expansion of a multivariable function Let $f: D \subseteq R^{n} \rightarrow R$, be of class C^{2} on the open interval D. Let $x^{*}, x \in D$ such that $\left[x^{*}, x\right] \subset D$ and there exists $z \in x^{*}, x$ such that

$$
f(x)=f\left(x^{*}\right)+\nabla f\left(x^{*}\right) \cdot\left(x-x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right) \cdot \nabla^{2} f(z)\left(x-x^{*}\right)
$$

where

$$
\nabla f(.)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(.) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(.)
\end{array}\right), \nabla^{2} f(.)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(.) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(.) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(.) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(.)
\end{array}\right)
$$

2. Alternative formulation of the second order Taylor series based expansion of a multivariable function For all $x \in V_{r}\left(x^{*}\right) \subseteq D$,
$f(x)=f\left(x^{*}\right)+\nabla f\left(x^{*}\right) \bullet\left(x-x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right) \cdot H f\left(x^{*}\right)\left(x-x^{*}\right)+\left\|x-x^{*}\right\|^{2} \varepsilon\left(x-x^{*}\right)$,
where ε is a function such that $\lim _{h \rightarrow 0} \varepsilon(h)=0$

Lecture Example 08/06/2022
Consider the funchon $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and defined as fotlows:

$$
f(x, y)=x^{4}+y^{4}-4 x y \quad 4 x y .
$$

and the set:

$$
C=\{(x, y):|x| \leq \sqrt{2},|y| \leq \sqrt{2}\}
$$

(i) Show that the probtem given by

$$
\min _{(x, y) \in C} f(x, y)
$$

has at least one solution.
(ii) Find the critical point (y) of $f(x, y)$
(iii) Determine the mimimum point(s) of $f(x, y)$ on \mathbb{R}^{2}, stating whether there are local or global minimum points.
part of the answer to part (iii)

$$
\nabla^{2} f(1,1)=\left(\begin{array}{cc}
12 & -4 \\
-14 & 12
\end{array}\right) ;
$$

Similarly, trace $\nabla^{2} f(1,1)>0$ and $\left|\nabla^{2} f(1,1),\right|>0$,
thus $\nabla^{2} f(1,1)$ has 2 stictly positive eigenvalues and we saw that it is also the case with $\nabla^{2} f(-1,1)$.
$f(1,1)=f(-1,-1)=-2<0$
Thus, the square $[-\sqrt{2}, \sqrt{2}] \times[-\sqrt{2}, \sqrt{2}]$ admits at least a minimum of $f(x, y)$, as it is compact.
Therefore $(1,1)$ and $(-1,-1)$ are the only 2 minima of $f(x, y)$ in C and thus both are global minima in the square for $f(x, y)$.

Fig.(1) shows the curve $x^{6}+y^{6}=1$. It is required to locate the point $P\left(x^{*}, y^{*}\right)$, on the curve, which is closest to the origin. Prove that $P\left(x^{*}, y^{*}\right)$ exists and explain how it is calculated.

Figure 1: graph of $x^{6}+y^{6}=1$

Short course on Multidisciplinary optimization and industrial applications

Optimisation - Introductory Examples
Prof MZ Dauhoo and Prof L Dumas

1 Optimisation

1.1 Unconstrained Optimisation

Let $\left(x_{0}, y_{0}\right)$ be a critical point of a function, f which is twice continuously differentiable in \mathcal{R}^{2}. The nature of the critical point can be determined as follows:

$\operatorname{det}\left(H_{f}\left(x_{0}, y_{0}\right)\right)$	$\partial_{x x} f\left(x_{0}, y_{0}\right)$	Nature of $\left(x_{0}, y_{0}\right)$
+	+	minimum
+	-	maximum
-		saddle point
0		no conlcusion

1.2 Constrained Optimisation

We are looking for the extrema of the function $f(x, y)$ under the constraint $g(x, y)=k$. This means that we are looking for the extrema of $f(x, y)$ when the point (x, y) belongs to the contour line $g(x, y)=k$. In Figure (1.2), we see this curve as well as several contour lines of f. These have the equation $f(x, y)=c$ for $c=7,8,9,10,11$.

Multidisciplinary optimization and industrial applications

Optimise $f(x, y)$ under the condition $g(x, y)=k$ means to find the largest (or smallest) value of c such that the contour line $f(x, y)=c$ intersects the curve $g(x, y)=k$.

For this to take place, the two curves must have the same tangent line. This means that the gradients are parallel, that is, there exists $\lambda \in \mathcal{R}$ such that $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$, where λ is the LAGRANGE multiplier.

Optimise $f(x, y)$ under the constraint $g(x, y)$.

We construct the Lagrangian as follows:

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y), \text { where } \lambda \text { is the Lagrange multiplier. }
$$

For the function f to exhibit extremum, we require $\nabla \mathcal{L}=0$.

$$
\nabla \mathcal{L}=\left(\begin{array}{c}
\frac{\partial \mathcal{L}}{\partial x} \tag{1}\\
\frac{\partial \mathcal{L}}{\partial y} \\
\frac{\partial \mathcal{L}}{\partial \lambda}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving the above system, we get $\left(x_{0}, y_{0}, \lambda_{0}\right)$ as the critical point.
In order to determine the nature of the critical point, we calculate the Hessian of the Lagrangian and determinine its nature as follows:

Let $\left(x_{0}, y_{0}, \lambda_{0}\right)$ be a critical point of a function, f which is twice continuously differentiable in \mathcal{R}^{2}. The nature of the critical point can be determined as follows:

$\operatorname{det}\left(H_{\mathcal{L}}\left(x_{0}, y_{0}, \lambda_{0}\right)\right)$	$\partial_{x x} \mathcal{L}\left(x_{0}, y_{0}, \lambda_{0}\right)$	Nature of $\left(x_{0}, y_{0}, \lambda_{0}\right)$
+	+	minimum
+	-	maximum
≤ 0		no conlcusion

Multidisciplinary optimization and industrial applications

Example 1:

Find the extrema and the corresponding nature of the function $f(x, y)=5 x^{2}+6 y^{2}-x y$ under the constraint $x+2 y=24$.

Figure 1: Sketch of the function $f(x, y)$ and the constraint.

We construct the Lagrangian as follows:

$$
\begin{align*}
\mathcal{L}(x, y, \lambda) & =f(x, y)-\lambda g(x, y) \\
& =5 x^{2}+6 y^{2}-x y-\lambda(x+2 y-24) \tag{2}
\end{align*}
$$

For the function f to exhibit extremum, we require $\nabla \mathcal{L}=0$.

$$
\nabla \mathcal{L}=\left(\begin{array}{c}
\frac{\partial \mathcal{L}}{\partial x} \tag{3}\\
\frac{\partial \mathcal{L}}{\partial y} \\
\frac{\partial \mathcal{L}}{\partial \lambda}
\end{array}\right)=\left(\begin{array}{c}
10 x-y-\lambda \\
12 y-x-2 \lambda \\
-x-2 y+24
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving the above system, we get

$$
x=6, \quad y=9 \quad \text { and } \quad \lambda=+51
$$

In order to determine the nature of the critical point, we calculate the Hessian of the Lagrangian as follows:

$$
H_{\mathcal{L}}(x, y)=\left(\begin{array}{cc}
\frac{\partial^{2} \mathcal{L}}{\partial x^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial x \partial y} \tag{4}\\
\frac{\partial^{2} \mathcal{L}}{\partial x \partial y} & \frac{\partial^{2} \mathcal{L}}{\partial y^{2}}
\end{array}\right)=\left(\begin{array}{cc}
10 & -1 \\
-1 & 12
\end{array}\right)
$$

Since $\operatorname{det}\left(H_{\mathcal{L}}(x, y)\right)=119>0$ and $\frac{\partial^{2} \mathcal{L}}{\partial x^{2}}=10>0$, therefore the critical point $(6,9)$ is a minimum.

