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Introduction, motivation, Notion of optimization with or without constraints
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1 Convex Sets

1.1 Lines and line segments
Suppose 1 # 9 are two points in R™. Then, points of the form g
y=Az1+ (1 —Aaz where NER, 1

form the line passing through z; and z,. The parameter value A = 0 corresponds to y = @,
and the parameter value A = 1 corresponds to y = x1. Values of the parameter A bet Q >
and 1 correspond to the (closed) line segment between z; and z,. (Boyd and Vanden) x

1.2 Convex Sets
Definition 1.1 Let C' be a given set, C C R%, (z,y) € C and (2,y') € C. Cis convex if

and only if
May)+ (1= N, y)€C for 0<A<l. A) ", £ /g
r J

(nﬂﬂd:c L Xy, Y,)
’ Hiare cpaks 0D <\ et Honk
(2, 9.0 D (1) 40-2 &' y)
(Xp19p) = 2,06, 9) F(FA) (x)y)

@_f\’v_&x_,&near lonAn bion ~
2 3
., 5 e
r/)\ﬂ
(nuz 4efs

Figure 1: A convex set Figure 2: A non-convex set
—_— _—
The point a = A(z,y) + (1 = A)(a',y/) is said to be a linear combination of points A and
B as shown in Figure 1.

Hello there! My name is Carl.
The two figures above demonstrate the illustrative
difference between convex and non-convex sets.
In this chapter you'll learn about convexity and how
to show, both analytically and graphically, the
convexity or non-convexity of sets.
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2 Convex Function

Definition 2.

un?ti,on flx,y) is said to be convex if and only if
(F=NE ) <M (@y) + (L= Nf (@y)  for
Ao e g

function f(x,y) is said to be sirictly convew if and only if

FA ) =X ) < Af () + (L= Nf (@ y)  for 0< A

(xxﬂ) ?;:' :1')

L'7‘(1:1)+ G- 1) p2) L)

LA 1)+ O-2r (! g ) 3
<

%J[)[Y,j) + (/-?Dy[)[x‘, y')

,

S 7['(1'5) - . —3_--- fox+a-ay |
ﬁi( W of[[é)O gum 2y y

[5 ) S { 5') Figure 8: A convex function

For a concave function,

FA@y) + 1= N y) > M () + (- Nf(y) for 0<A<L.

fOx+@1-2y)

x -2y y

Figure 9: A concave function
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2.2 Hessian

Let f(z1,%2,73) = 73 + (71 — 22)* + (29 — 23)% + z2.
The Hessian matrix related to f(z1,z2, z3) is given by

%f 92f 92f
Wi—azlazg
2 02 927 02
\Y f(iﬂhl“mxs) = ! { !

w201 ,Zg . D203
o2 f tr 92 f | 7 o2 f
Ox30r1  Ox30xo 3753

Definition 2.7 Let f be a function of two or more variables with continuous first order and
second order derivatives on an open and convex set S. let the Hessian of f be denoted by
H(X). Then

(i) f is concave if and only if H(X) is negative semidefinite for X € S.

1) If H(X) is negative definite for X € S, then f is strictly concave.

(ii) If H(X) is negative definite J f y 2,20, P70 A 70
(i1i) f is convex if and only if H(X) is positive semidefinite for X € S.

(iv) f is strictly convex if and only if H(X) is positive definite for X € S.
T p—

A>0,7,;79, 71,50

14

New Section 1 Page 2



Definition

A set D C R?is:

- bounded if it can be enclosed in a circle;

- closed if it includes its boundary (denoted by 9D );
We say D is compact if it is both closed and bounded.

Q=

Bounded, not closed Closed, not bounded
4 .
Not bounded, not closed Compact

Figure 1: Closedness, boundedness and compactness



A Few Useful Theorems

Theorem 1
If f(x) is continuous on a compact set D C R", then f has

global extrema there.

Theorem 2

If f(x) is differentiable on a compact set D C R", then the
extrema of f must occur:

Either

- At critical points within D;

OR

- On the boundary 9D.

Theorem 3

Let f(x)be a continuous function defined on all ofR".

Iff(x)is coercive, then f(x)has a global minimizer.

Furthermore, if the first partial derivatives of f(x) exist on all ofR",

then any global minimizers of f(x) can be found among the critical points of f(x).



Optimisation = Taylor Series 01/01/2023
1. Second order Taylor series based expansion of a multivariable function

Let f: D C R® — R, be of class C? on the open interval D. Let 2*,2 € D such that
[z*, 2] C D and there exists z € z*, z such that

F@) = F @)+ V@) - (@ =) + 3 (@ =) - V2A(2) (& — 2°)

2
where ﬁ() ﬂ() ﬂ()
oxq \' Ox10x1 \° 0x10Tn \°
V()= : V2 = : :
2L() G () e ()

2. Alternative formulation of the second order Taylor series based expansion
of a multivariable function
For all x € V, (2*) C D,

fx) = f(x*)+Vf(x*)°($—x*)+%(x—x*)-Hf(SC*) (¢ —a")+|lz = 2*|*e (z — o),

where ¢ is a function such that }lliné e(h)=0
—>



Lecture Example 08/06/2022
Consider the funchon f : R? — R and defined as fotlows:

flz,y) = ot 4yt —dzy  dzy.

and the set:

O ={(ey) [z < V2.lyl < V2]

(i) Show that the probtem given by

min f(x,
Juin f(z,y)

has at least one solution.
(ii) Find the critical point(y) of f(z,y)

(iii) Determine the mimimum point(s) of f(x,y) on R?, stating whether there are local
or global minimum points.

part of the answer to part (iii)

) 12 -4\

VLD = ( 14 12 )
Similarly, trace V2f(1,1) > 0 and |V2f(1,1,)| > 0,
thus V2f(1,1) has 2 stictly positive eigenvalues and we saw that it is also the case
with V2f(—1,1).
f(1,1)=f(-1,-1)=-2<0
Thus, the square [—v/2,v/2] x [-v/2,v/2] admits at least a minimum of f (x,y), as it
is compact.
Therefore (1,1) and (—1, —1) are the only 2 minima of f(z,y) in C and thus both are
global minima in the square for f (z,y).



Fig.(1) shows the curve 2% + y® = 1. It is required to locate the point P (z*,y*),
on the curve, which is closest to the origin. Prove that P (z*,y*) exists and explain
how it is calculated.

1 -0.5 0 .5

'U.j 4

Figure 1: graph of 25 + % =1



Multidisciplinary optimization and industrial applications

Short course on Multidisciplinary optimization and
industrial applications

Optimisation - Introductory Examples

Prof M7 Dauhoo and Prof L Dumas

1 Optimisation

1.1 Unconstrained Optimisation

Let (xo,yo) be a critical point of a function, f which is twice continuously differentiable in
R2. The nature of the critical point can be determined as follows:

det(Hy (20,90)) Owaf (x0,y0) Nature of (xg,yo)
+ + minimum

+ — maximuim

0

saddle point
no conlcusion

1.2 Constrained Optimisation

We are looking for the extrema of the function f(z,y) under the constraint g(x,y) = k. This
means that we are looking for the extrema of f(x,y) when the point (x,y) belongs to the
contour line g(z,y) = k. In Figure (1.2), we see this curve as well as several contour lines of
f. These have the equation f(x,y) = ¢ for ¢ =7,8,9,10, 11.

. T flx,y
LN N — flx,y})=9
' T flx,y
T — flx,y




Multidisciplinary optimization and industrial applications

Optimise f(x,y) under the condition ¢g(z,y) = k means to find the largest (or smallest) value
of ¢ such that the contour line f(z,y) = ¢ intersects the curve g(z,y) = k.

For this to take place, the two curves must have the same tangent line. This means that the

gradients are parallel, that is, there exists A € R such that V f(xq,y0) = AVg(xo, y0), where
A is the LAGRANGE multiplier.

Optimise f(z,y) under the constraint g(z,y).
We construct the Lagrangian as follows:
L(x,y,\) = f(z,y) — Ag(z,y), where X is the Lagrange multiplier.

For the function f to exhibit extremum, we require V.L = 0.

8_£
ox
0
VL = % =1 0 (1)
dy 0
8_£
o\

Solving the above system, we get (g, yo, Ag) as the critical point.

In order to determine the nature of the critical point, we calculate the Hessian of
the Lagrangian and determinine its nature as follows:

Let (xo,Y0, Ao) be a critical point of a function, f which is twice continuously differ-
entiable in R?. The nature of the critical point can be determined as follows:

det(Hz (20,Y0, No))  Owal (20,Y0, No) Nature of (z¢,yo, Ao)

+ + minimum
+ — maximum
<0 no conlcusion
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Example 1:

Find the extrema and the corresponding nature of the function f(x,y) = 5z% + 6y* — xy
under the constraint x + 2y = 24.

R

Figure 1: Sketch of the function f(z,y) and the constraint.
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We construct the Lagrangian as follows:

»C(Z',y,)\) = f(xvy) - )‘g(xay)a
= 522 + 6y — 2y — A(z + 2y — 24).

For the function f to exhibit extremum, we require V.L = 0.

oL
ox
10z —y— A 0
VL = (Z_E =| 12y—z—-2X | =10 (3)
Y —x— 2y + 24 0
oL
BN

Solving the above system, we get
r=6, y=9 and \=+51.

In order to determine the nature of the critical point, we calculate the Hessian of the La-
grangian as follows:

0?°L 0L
Oz 8x—8y 10 -1
HE (.T,y) = - (4)
L 0L -1 12
0xdy 8_y2

2

0°L
Since det(H, (x,y)) = 119 > 0 and 2 10 > 0, therefore the critical point (6,9) is a
7

minimum.



