Exercise session 1: first and second order methods

Question 1

Graph few contour lines of the function given by:

$$
J(x, y)=2(x-1)^{2}+y^{2}+1
$$

then at a given point on the contour lines, draw the gradient.

Question 2

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be differentiable and convex. Let x and y be elements of \mathbb{R}^{n}, such as $f(y)<f(x)$. Show that $y-x$ is a descent direction of f at x. It is always the case when f is not convex?

Question 3

The following function is to be minimized on \mathbb{R}^{3} :

$$
J(x, y, z)=x^{2}+2 y^{2}+z^{2}-x+y-z .
$$

a Give the exact solution of the problem considered, explaining your answer clearly.
b The gradient descent method, with a backtracking strategy using Armijo condition is used in order to find the numerical solution using the initial approximation $X_{0}=(0,1,1)$.
(i) What is the descent direction d at the first iteration?
(ii) For the function J, defined above, calculate explicitly and represent graphically in this case the function $\alpha \mapsto J\left(X_{0}+\alpha d\right)$. Find the corresponding values of α satisfying the Armijo condition for $\beta=0.1$, that is:

$$
J\left(X_{0}+\alpha d\right) \leq J\left(X_{0}\right)+\beta \alpha\left\langle d, \nabla J\left(X_{0}\right)\right\rangle
$$

c Find X_{1} satisfying the Armijo condition using the backtracking algorithm for $\alpha_{\text {init }}=1$ and $\tau=0.1$. Recall that the backtracking method consists in finding the step size α by trying succesively $\alpha_{\text {init }}$, then $\tau \alpha_{i n i t}, \tau^{2} \alpha_{i n i t}, \ldots$, until it satisfies the Armijo condition.
d Compute the sequence X_{k} for $k \geq 2$ by using a Python script. Does it converge to the exact minimum?

Question 4

It is required to minimize the following function:

$$
J(x, y, z)=x^{4}+2 y^{4}+z^{4}-2 x+y-z
$$

on \mathbb{R}^{3}.
a Give the exact solution of the above minimization problem.
b Newton's method is used in order to obtain a numerical solution using the initial approximation $X_{0}=(1,1,1)$. Find X_{1}.
d Compute the sequence X_{k} for $k \geq 2$ by using a Python script. Does it converge to the exact minimum?

