Exercise session 2: derivative free optimization, direct methods

Question 1 On the Nelder Mead algorithm
Consider the Nelder Mead algorithm for the sphere function in \mathbb{R}^{2} :

$$
f(x, y)=x^{2}+y^{2}
$$

and the initial simplex made of $A=(4,5), B=(5,3)$ and $C=(5,6)$.
Compute the best obtained value by this algorithm after one iteration.

Question 2 On the Nelder Mead algorithm

1. Recall briefly the main principles of the Nelder Mead algorithm. A 2D illustration of the possible steps can be used.
2. Prove that no shrinkage steps are performed when the Nelder Mead algorithm is applied to a strictly convex function. We recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex if and only if:

$$
\left.\forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \forall \lambda \in\right] 0,1[, f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y) \text { if } x \neq y
$$

Question 3 On the Nelder Mead algorithm

Consider the Nelder Mead algorithm with its nominal parameters. Denote $S_{k}=$ $\left\{y_{k}^{0}, \ldots, y_{k}^{n}\right\}$ the simplex obtained at iteration k with the corresponding values by the function $f: f_{k}^{0} \leq f_{k}^{1} \leq \ldots \leq f_{k}^{n}$.
Assume that the function f is bounded from below

1. Prove that the sequence $\left(f_{k}^{0}\right)_{k \in \mathbb{N}}$ is convergent.
2. If only a finite number of shrink steps occurs, prove that all the sequences $\left(f_{k}^{i}\right)_{k \in \mathbb{N}}$ are convergent $(0 \leq i \leq n)$.
3. Define the volume of the simplex:

$$
V\left(S_{k}\right)=\frac{1}{n!} \operatorname{det}\left[y_{k}^{0}-y_{k}^{n}, \ldots y_{k}^{n-1}-y_{k}^{n}\right]
$$

Check that for $n=2$ the definition of $V\left(S_{k}\right)$ corresponds to the area of the triangle (S_{k}).
4. Give the value of $V\left(S_{k+1}\right)$ in terms of $V\left(S_{k}\right)$ when an expansion occurs (for sake of simplicity, we can assume that $y_{k}^{n}=0$).
5. Give the value of $V\left(S_{k+1}\right)$ in terms of $V\left(S_{k}\right)$ when a shrink step occurs.

