

(ai Vivoisinage de la dans I) alors en a: VteI, Y(1) < Ce kit-t.1 * solution globale : existence de XII solvhon de (B). XIII solution de (B). preuve: on suppose t > to-k(t-ti)

n solution maximale: solution beale Soit D(t) = (C+k) 46)ds)e Lemme: soit I inhervalle de IR $9(t) = -k0(t) + k(t) = -k(t-t_0)$ contenant to et $9(t) = -k(t-t_0) = -k(t-t_0)$ telle que

Helle que

HEI, 4(t) & C+K | Sylls)ds | Ainsi & Ct) & D (to) = C

Gnadonc bien 4(t) ≤ Cek(t-ti) Ce lemme permet de démontrer un resoltat d'unicité locale pour les solutions de (B): Corollaire: on suppose que f. IXI > R est localement Lipschitzienne par rapport à sa seconde voriable, c'est à dîre: V(to, xo) EIXI J V voisinage de (to, xc) tq $\exists L>0, \forall (t,x), (t,y) \in V$

 $\|f(f,\infty)-f(f,y)\| \leq L\|x-y\|$ Alors, si X1 et X2 solutions Cocales de 6 autar de 10, telles goe X1(to) = X2(to), alors X1 = X2 sur leur intervalle de définition commun.

Sout reIs. NIz, to

Souther

Souther

(+) = |X(t)-X(t)|

Gna X(t)=X(to)= [f(s,X,1s)ds] II Un resultat d'existence 3 et d'unicité globale ce qui implique si t E, J to-8, to+8[: $11 \times_{1}(1) - \times_{2}(1) 11 \leq |L| \times_{1} - \times_{2} ||S| dS$ Theoreme (Cauchy-Lipschitz global: on suppose que f'est Le Cemme de Gronwall, implique globalement Lipschitz par rapport que ((t) = 0 sur]to-8, to+8[On déduit alors que $X_1 = X_2$ sur I_1 / I_2 à sa seconde variable; $\exists L>0, \forall (t, x, x) \in I \times \Omega$ por un prinape de prolongement: A=1 LEI1112/X1(h)=X2(h) lif(t, 22) - f(t, 21) 12 L | 2-2 | Alors, pour tout XoEQ, icenste (A fermé, ouvert, non vide ure unique solution globale de (6) Velle que X(to) = Xo. => A = I1/1I2

< L | | X-X | e 2215-to) | 4 preuve: on se restraint à un compact Kinclus dans I et onse place dans $\leq L \|\chi_2 - \chi_1\|_{L} \left[\frac{1}{2L}e^{2L(s-b)}\right]$ E=6(k,R), muni de la norme $\frac{4111}{2} = 210 - 100$ $\frac{4111}{2} = 210 - 100$ $\frac{4111}{2} = 210 - 100$ 11 ×11 = Max (11×(+) 11 e 2LIG-16) ||X|| = ||a|| |E|| = ||a| $\| \phi(X_2)(h) - \phi(X_1)(h) \| = \| \int_{1}^{h} (x_1)(h)(h) \| = \| \int_{1}^{h} (x_2)(h) - \phi(X_1)(h) \| = \| \int_{1}^{h} (x_2)(h) \| = \| \int_{1}^{$ ds Solution de de Bour K telle que X(to) = Xo, Gn obtient le mene $\leq L \int_{\Gamma} \| \chi(s) - \chi_{\lambda}(s) \| ds$ resultat sur I entier par prolongement.

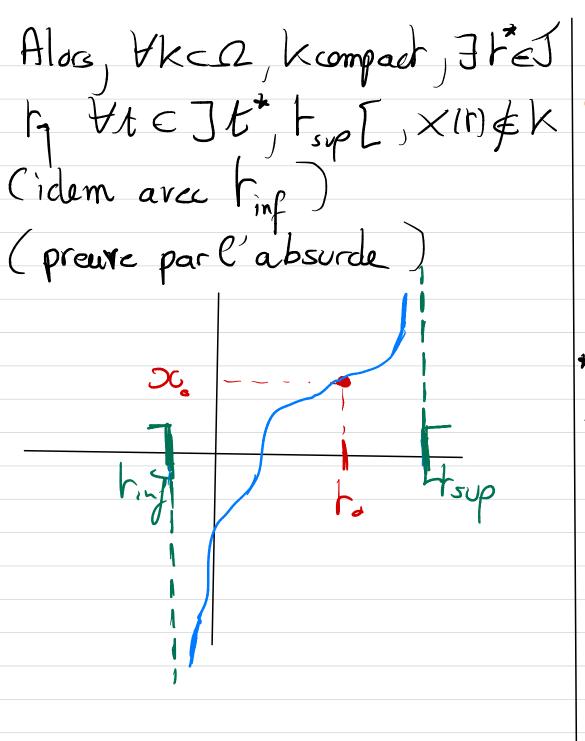
Remarque: le résultat est maintenu avec une hypothère plus faible sur s: globalement Lipschitz sur tout compact de 11 par rapport à seconde voriable. III Le théoreme de Couchy-Lipschitz Cocal Il s'agit de la versien la plus générale du théorème d'existence et d'uni circ (dont le cas global précédent est un corollaire). Théoreme (Cauchy-Lipschiß Cal)

On suppose que f'est continues et 6 calement Lipschitzienne sur I Alors, partat (to, Xo) eIxD, le problème (B) admet une unique solution maximale. preuve: admise. 2 approches sont possibles: soit avecle théoreme de Picard, soit à l'aide d'une suite d'approximations construites avec la

methode d'Euler (voir IDemaily)

On peut montrer alors les corollaires suivants: Corollaire: sous les hypothèses du theoreme précedent par tout (tox.) EIXI il existe 5>0 et X une unique solvhier de (8) sur Cintervalle Jro-8, to+8 [by $\times (f_o) = x_o$

Corolloire: sous les mêmes 6 hypotheses, la solution maximale est définie sur un intervalle ouvert. (immédiat par l'absurole). Le corollaire suivant maduit l'explosion de la solvhien aux linites de l'intervalle maximal Corollaire (sortie de tout compact) sous les mêmes hypothèses on note J= Jr, Sup[l'intervalle ai est définire la solution maximale.



Ovelques exemples:

* Volterra ;

$$f(t, (x_1)) = (ax_1 - bx_1x_2) - cx_2 + cx_1x_2$$

ocalement Lipschitz por rapport à sou seconcle voriable car:

 $||f(t,X)-f(t,Y)||_{\infty} \le L ||X-Y||_{\infty}$ (localement en X,Y).

(< | X- Y|| 00 + | X || X - Y|| 00 (k = max (a, b, e, d))

> existence et uni até bale dus solutions. On peut montrer que l'intervalle maximal est IR, et que les solutions sont bi-périodiques) 2 prédateurs 0 = -wsin 0 - k0 * pendule $\Theta(t_0)=0.$ (avec frottements) 9(h) =0.

 $f(f(x)) = (-\alpha^2 \sin 3c - ky) 8$ * fest continue, globalement Lipschik porrapport à sa seconde variable (L = Max (1, wtk)) -> existence et unicité globales * Remorque et contre-exemple: sans l'hypothère Lipschitz sur], il existe un resultat d'existence appelé Cauchy - Léano (basé sur le Phioreme d'Ascoli). La exemple,

le problème oc = - Voy (oc(0) = 1admet par solutions: $\frac{\partial x}{\partial v_{3c}} = \frac{1}{2} \Rightarrow \sqrt{x} = \frac{1}{2}(t) + 1$ $\Rightarrow x = (1 - \frac{1}{2}t)^{2}$ $x(t) = \left(1 - \frac{1}{2}t\right)^2$ mais aussi $out) = \begin{cases} (1-\frac{1}{2}t)^2 & \text{sin} & t \leq 2\\ 0 & \text{sinon} & 1 \end{cases}$

W Cous particulier important. 9 les systèmes dynamiques Dans de nombreuses situations, on est amené à étudier des systèmes du type: X = f(X) (ED. autonomis) Or définit de nouvelles notions: -> partrait de phase: carbes paramétrés 1-> (X1(h), --, ×n(h)) (n=2 av 3)

(n=2) les courbes d'un partrait de phase ne s'intersectant jamaio (uniaté) de C.L. -> points d'équilibre: XER (Xo instable si non stable) ra f(x0) = 0 x Xo est asymptoliquement On définit la stabilité des points d'équilibre d'un système dynamique W voisinage by la solution de lb)
(possédant des solutions globales) verifie ×(r) -> xo qd r >+00

Défisérait roun point d'équilibre. 10 Det Doil Dour pomi d'aprilluic.

Scorest stable si partout voisinage

V de Do, il existe un voisinage W V de oco, il existe un voisinage W de xo ra lasolution de (g) X' = f(x)(x(h))eW cottelle que XLh) eV HrelR stable s'il est stable et s'il enste

stable mais non asymptoliquement stable esymptotiquement stable instable

On cherche à caractériser 11 la nature des points d'équilibre. On étudie tout d'abord le cas lini--aire: X = AX avec A < olb n (IR). La carachénisation se fout à cles valeurs propres complexes de f) pair le seul point d'équilibre $X_0 = 0$. Théoreme: * si YA = Sp(A), Re(A) <0)

celois Xocstasymptotiquement stable, * Si JJESp(A), Se(A)>0, aldes Xocor instable. z si Sp (A) 1 ilk # p:] si au aune valeur propre n'est defective (*) Xo stable 1 since: Xo est instable (*) pas de bloc de Tordan du type (ox) (preuve : culils à venir : exponentielle) de Matrices et décomposition de Jordan

Cas portieulier n = 2 / 12 Poincaré Diagram: Classification of Phase Portaits in the $(\det A, \operatorname{Tr} A)$ -plane degenerate sink spiral source degenerate source uniform motion sink source Tr A (Wikipedia) On peut déduire dans certains cas, le comportement d'un systeme général à portir de son linéarisé autour de Xo:

(linearisalier) $X' = Df(X_{\circ})(X-X_{\circ})$ est asymptoliquement stable. n si 1>0 alous Xo

= si $\Delta = 0$, on re peut rien dire.