Final Exam 2016 - Derivative Free Optimization (Part I)

Anne Auger anne.auger@inria.fr

February 2016

Exercice 1: Optimization of a noisy function (5 points)

We have considered during the class the optimization of numerical **noiseless** functions $f : \mathbf{x} \in \mathbb{R}^n \to \mathbb{R}$ where for a given input \mathbf{x} , the outcome $f(\mathbf{x})$ is **deterministic**. We now consider the optimization of **noisy** functions where two different calls to the function f will give two different **random** outputs or in other words where $f(\mathbf{x})$ is a random variable. The optimization goal generally formulated is then to optimize the unknown expected value $E[f(\mathbf{x})]$ while we only have access to the noisy function $f(\mathbf{x})$.

We consider first the sphere function with multiplicative noise defined as

$$f_{\rm ns1}(\mathbf{x}) = f_{\rm sphere}(\mathbf{x})(1 + \epsilon \mathcal{N}(0, 1)) \tag{1}$$

where $f_{\text{sphere}}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{2}$ and $\epsilon > 0$ and $\mathcal{N}(0,1)$ denotes a normal distribution with mean 0 and variance 1 that is sampled anew independently for each call of f. All the functions are to be minimized.

- a) Compute for a given **x** the expected value (or mean value) of $f_{ns1}(\mathbf{x})$ that we denote $E[f_{ns1}(\mathbf{x})]$.
- b) What is the minimum of $E[f_{ns1}(\mathbf{x})]$?
- b) Compute for a given \mathbf{x} , the variance of $f_{ns1}(\mathbf{x})$ that we will denote $Var(f_{ns1}(\mathbf{x}))$. Show that $Var(f_{ns1}(\mathbf{x}))$ decreases to zero when \mathbf{x} approaches the optimum of $E[f_{ns1}(\mathbf{x})]$.

We consider now the sphere function with additive noise defined as

$$f_{\rm ns2}(\mathbf{x}) = f_{\rm sphere}(\mathbf{x}) + \epsilon \mathcal{N}(0, 1) \tag{2}$$

where $f_{\text{sphere}}(\mathbf{x}) = \sum_{i=1}^{n} \mathbf{x}_{i}^{2}$ and $\epsilon > 0$ and $\mathcal{N}(0, 1)$ denotes a normal distribution with mean 0 and variance 1 that is sampled anew independently for each call of f.

- d) Compute for a given **x** the expected value of $f_{ns2}(\mathbf{x})$ that we denote $E[f_{ns2}(\mathbf{x})]$.
- e) What is the minimum of $E[f_{ns2}(\mathbf{x})]$?
- f) Compute, for a given \mathbf{x} , the variance of $f_{ns2}(\mathbf{x})$ that we will denote $\operatorname{Var}(f_{ns2}(\mathbf{x}))$. Show that $\operatorname{Var}(f_{ns2}(\mathbf{x}))$ does not decrease to zero when \mathbf{x} approaches the optimum of $E[f_{ns2}(\mathbf{x})]$.

Figure 1: Evolution of the objective function value of the best solution per iteration for f_{ns1} and f_{ns2} .

g) We are using the CMA-ES algorithm to optimize the functions f_{ns1} and f_{ns2} . We set $\epsilon = 10^{-3}$. We display in Figure 1 the evolution of the objective function value of the best candidate solution at a given iteration versus the number of function evaluations for both the f_{ns1} and f_{ns2} functions. For each function, we display three independent runs. Identify to which function the red plots correspond and to which function the blue plots correspond. Explain your reasoning.

Exercice 2 (5 points)

We consider the following test functions to be minimized:

$$f_1(\mathbf{x}) = \mathbf{x}_1^2 + 10^6 \sum_{i=2}^n \mathbf{x}_i^2; \quad f_2(\mathbf{x}) = 10^6 \mathbf{x}_1^2 + \sum_{i=2}^n \mathbf{x}_i^2; \quad f_3(\mathbf{x}) = f_1(\mathbf{R}\mathbf{x}) ; \quad f_4(\mathbf{x}) = f_2(\mathbf{R}\mathbf{x})$$

where for the functions f_3 and f_4 the matrix $\mathbf{R} \in \mathcal{M}_n(\mathbb{R})$ is a rotation matrix that is sampled uniformly among the set of rotation matrices.

- a) What is the global minimum of each function (explain your reasoning)? Compute the Hessian matrix and its condition number for each function.
- b) Fill in the table below by putting a cross whenever you think a property is true.

	separable	non-separable	unimodal	multi-modal	ill-conditioned
f_1					
f_2					
f_3					
f_4					

We are using the CMA-ES to minimize the functions f_1 , f_2 , f_3 et f_4 in dimension n = 5. The initial mean vector is taken equal to (1, 1, 1, 1, 1) and the initial step-size is equal to 10. The

Figure 2: Single runs of the CMA-ES algorithm on the functions f_1 , f_2 , f_3 and f_4 . Identify the function corresponding to each run.

graphical output of a single run of the CMA-ES algorithm minimizing each of the 4 functions is presented in Figure 2.

- c) Explain what is presented on each of the 4 graphs of the graphical output (for the upper left plot we will only consider the blue and green curves).
- d) Identify which function correspond to each run presented in Figure 2 (a), (b), (c) et (d). The reasoning should be carefully explained.
- e) Explain in details what you observe on the plots in Figure 2 (c). Identify and explain in particular the different convergence phases.

DERVATIVE FREE OPTIMIZATION FINAL EXAM, PART 2

Exercice 1 On the pattern search method

Consider the classical pattern search method for the minimization of a function $f : \mathbb{R}^n \to \mathbb{R}$ with a fixed set of directions \mathcal{D} such that

$$\forall d \in \mathcal{D}, \quad ||d|| = 1$$

and

$$\kappa = \min_{||v||=1} \max_{d \in \mathcal{D}} v^T d > 0$$

Denote $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ the sequence of points of the pattern search method and $(\alpha_k)_{k \in \mathbb{N}}$ the associated step size. We recall that the acceptation criterion for a new point is the following :

$$f(x_k + \alpha_k d) < f(x_k) - c \frac{\alpha_k^2}{2}$$

where c > 0 is fixed and that $\alpha_{k+1} = \theta \alpha_k$ (respectively $\alpha_{k+1} = \gamma \alpha_k$) in case of failure (respectively success) with $\theta \in]0, 1[$ and $\gamma \ge 1$.

The following lemma (admitted here) can be proven :

Lemma Assume that f is C^1 , ∇f is ν -Lipschitz and that f is bounded from below by $m \in \mathbb{R}$. Then, the sequence of step size satisfies for all $N \in \mathbb{N}$:

$$\sum_{k=0}^{N} \alpha_k^2 \le \frac{2\gamma^2}{c(1-\theta^2)} \left(\frac{c\alpha_0^2}{2\gamma^2} + f(x_0) - m\right)$$

1. Prove that

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \quad |f(y) - f(x) - \nabla f(x)^T (y-x)| \le \frac{\nu}{2} ||y-x||^2$$

- 2. Prove that $\lim_{k\to\infty} \alpha_k = 0$ and that the set of failure steps is infinite.
- 3. Prove that for a failure step

$$|\nabla f(x_k)|| \le \frac{c+\nu}{2\kappa} \alpha_k$$

4. Prove that

$$\liminf_{k \to \infty} ||\nabla f(x_k)|| = 0$$

Exercice 2 On the trust region method

Consider the following function on \mathbb{R}^2 :

$$f(x_1, x_2) = \begin{cases} x_1^2 + x_2^2 + (10 - x_1)x_2 & \text{if } x_1 < 10\\ x_1^2 + x_2^2 & \text{if } x_1 \ge 10 \end{cases}$$

and the following set of initial points

$$\mathcal{Y}_0 = \{(11, 1), (11, 0), (10, -1), (10, 1), (10, 0), (9, 0)\}$$

1. Prove that the first quadratic model around the initial point $x_0 = (10, 0)$ is equal to

$$m_0(x_1, x_2) = x_1^2 + x_2^2$$

- 2. Assume that is initial radius Δ_0 is equal to 2, what is the next possible iterate x_0^+ ?
- 3. Compute the ratio

$$\rho_0 = \frac{f(x_0) - f(x_0^+)}{m_0(x_0) - m_0(x_0^+)}$$

Is the point x_0^+ accepted and what is the set \mathcal{Y}_1 ?

Exercice 3 On the RBF and the kriging method

Consider the two following metamodels for a given function f defined on \mathbb{R}^n :

– A RBF metamodel with a radial basis function

$$h(r) = e^{-cr^2}$$

- A kriging model with a covariance function

$$c(x,y) = \theta_1 + \theta_2 \exp(-\sum_{i=1}^n \frac{(x_i - y_i)^2}{2\sigma_i})$$

Prove that for a set of parameters for the kriging that will be given, the two metamodels are equal.