
Final Exam 2016 - Derivative Free Optimization (Part I)

Anne Auger
anne.auger@inria.fr

February 2016

Exercice 1: Optimization of a noisy function (5 points)

We have considered during the class the optimization of numerical noiseless functions f : x ∈
Rn → R where for a given input x, the outcome f(x) is deterministic. We now consider the

optimization of noisy functions where two different calls to the function f will give two different

random outputs or in other words where f(x) is a random variable. The optimization goal

generally formulated is then to optimize the unknown expected value E[f(x)] while we only have

access to the noisy function f(x).
We consider first the sphere function with multiplicative noise defined as

fns1(x) = fsphere(x)(1 + �N (0, 1)) (1)

where fsphere(x) =
�n

i=1 x
2
i and � > 0 and N (0, 1) denotes a normal distribution with mean 0

and variance 1 that is sampled anew independently for each call of f . All the functions are to be

minimized.

a) Compute for a given x the expected value (or mean value) of fns1(x) that we denote E[fns1(x)].

b) What is the minimum of E[fns1(x)]?

b) Compute for a given x, the variance of fns1(x) that we will denote Var(fns1(x)). Show that

Var(fns1(x)) decreases to zero when x approaches the optimum of E[fns1(x)].

We consider now the sphere function with additive noise defined as

fns2(x) = fsphere(x) + �N (0, 1) (2)

where fsphere(x) =
�n

i=1 x
2
i and � > 0 and N (0, 1) denotes a normal distribution with mean 0 and

variance 1 that is sampled anew independently for each call of f .

d) Compute for a given x the expected value of fns2(x) that we denote E[fns2(x)].

e) What is the minimum of E[fns2(x)]?

f) Compute, for a given x, the variance of fns2(x) that we will denote Var(fns2(x)). Show that

Var(fns2(x)) does not decrease to zero when x approaches the optimum of E[fns2(x)].
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Figure 1: Evolution of the objective function value of the best solution per iteration for fns1 and

fns2.

g) We are using the CMA-ES algorithm to optimize the functions fns1 and fns2. We set � = 10
−3

.

We display in Figure 1 the evolution of the objective function value of the best candidate

solution at a given iteration versus the number of function evaluations for both the fns1 and

fns2 functions. For each function, we display three independent runs. Identify to which

function the red plots correspond and to which function the blue plots correspond. Explain

your reasoning.

Exercice 2 (5 points)

We consider the following test functions to be minimized:

f1(x) = x2
1 + 10

6�n
i=2 x

2
i ; f2(x) = 10

6x2
1 +

�n
i=2 x

2
i ; f3(x) = f1(Rx) ; f4(x) = f2(Rx)

where for the functions f3 and f4 the matrix R ∈ Mn(R) is a rotation matrix that is sampled

uniformly among the set of rotation matrices.

a) What is the global minimum of each function (explain your reasoning)? Compute the Hessian

matrix and its condition number for each function.

b) Fill in the table below by putting a cross whenever you think a property is true.

separable non-separable unimodal multi-modal ill-conditioned

f1
f2
f3
f4

We are using the CMA-ES to minimize the functions f1, f2, f3 et f4 in dimension n = 5.

The initial mean vector is taken equal to (1, 1, 1, 1, 1) and the initial step-size is equal to 10. The
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Figure 2: Single runs of the CMA-ES algorithm on the functions f1, f2, f3 and f4. Identify the

function corresponding to each run.

graphical output of a single run of the CMA-ES algorithm minimizing each of the 4 functions is

presented in Figure 2.

c) Explain what is presented on each of the 4 graphs of the graphical output (for the upper left

plot we will only consider the blue and green curves).

d) Identify which function correspond to each run presented in Figure 2 (a), (b), (c) et (d). The

reasoning should be carefully explained.

e) Explain in details what you observe on the plots in Figure 2 (c). Identify and explain in

particular the different convergence phases.
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DERVATIVE FREE OPTIMIZATION FINAL EXAM, PART 2

Exercice 1 On the pattern search method

Consider the classical pattern search method for the minimization of a function
f : Rn → R with a fixed set of directions D such that

∀d ∈ D, ||d|| = 1

and
κ = min

||v||=1
max
d∈D

vTd > 0

Denote (xk)k∈N the sequence of points of the pattern search method and (αk)k∈N
the associated step size. We recall that the acceptation criterion for a new point
is the following :

f(xk + αkd) < f(xk)− c
α2
k

2

where c > 0 is fixed and that αk+1 = θαk (respectively αk+1 = γαk) in case of
failure (respectively success) with θ ∈]0, 1[ and γ ≥ 1.

The following lemma (admitted here) can be proven :

Lemma Assume that f is C1, ∇f is ν-Lipschitz and that f is bounded from
below by m ∈ R. Then, the sequence of step size satisfies for all N ∈ N :

N�

k=0

α2
k ≤ 2γ2

c(1− θ2)

�
cα2

0

2γ2
+ f(x0)−m

�

1. Prove that

∀(x, y) ∈ Rn × Rn, |f(y)− f(x)−∇f(x)T (y − x)| ≤ ν

2
||y − x||2

2. Prove that limk→∞ αk = 0 and that the set of failure steps is infinite.

3. Prove that for a failure step

||∇f(xk)|| ≤
c+ ν

2κ
αk

4. Prove that
lim inf
k→∞

||∇f(xk)|| = 0

http://dumas.perso.math.cnrs.fr/V04.html


Exercice 2 On the trust region method

Consider the following function on R2 :

f(x1, x2) =

�
x21 + x22 + (10− x1)x2 if x1 < 10

x21 + x2
2 if x1 ≥ 10

and the following set of initial points

Y0 = {(11, 1), (11, 0), (10,−1), (10, 1), (10, 0), (9, 0)}

1. Prove that the first quadratic model around the initial point x0 = (10, 0)
is equal to

m0(x1, x2) = x21 + x22

2. Assume that is initial radius ∆0 is equal to 2, what is the next possible
iterate x+0 ?

3. Compute the ratio

ρ0 =
f(x0)− f(x+0 )

m0(x0)−m0(x
+
0 )

Is the point x+0 accepted and what is the set Y1 ?

Exercice 3 On the RBF and the kriging method

Consider the two following metamodels for a given function f defined on Rn :

– A RBF metamodel with a radial basis function

h(r) = e−cr2

– A kriging model with a covariance function

c(x, y) = θ1 + θ2 exp(−
n�

i=1

(xi − yi)2

2σi
)

Prove that for a set of parameters for the kriging that will be given, the two
metamodels are equal.


