DERVATIVE FREE OPTIMIZATION FINAL EXAM, DETERMINISTIC PART

Exercice 1 On the Nelder Mead algorithm
Consider the Nelder Mead algorithm with its nominal parameters. Denote $S_{k}=$ $\left\{y_{k}^{0}, \ldots, y_{k}^{n}\right\}$ the simplex obtained at iteration k with the corresponding values by the function $f: f_{k}^{0} \leq f_{k}^{1} \leq \ldots \leq f_{k}^{n}$.

Assume that the function f is bounded from below

1. Prove that the sequence $\left(f_{k}^{0}\right)_{k \in \mathbb{N}}$ is convergent.
2. If only a finite number of shrink steps occurs, prove that all the sequences $\left(f_{k}^{i}\right)_{k \in \mathbb{N}}$ are convergent $(0 \leq i \leq n)$.
3. Define the volume of the simplex :

$$
V\left(S_{k}\right)=\frac{1}{n!} \operatorname{det}\left[y_{k}^{0}-y_{k}^{n}, \ldots y_{k}^{n-1}-y_{k}^{n}\right]
$$

Check that for $n=2$ the definition of $V\left(S_{k}\right)$ corresponds to the area of the triangle $\left(S_{k}\right)$.
4. Give the value of $V\left(S_{k+1}\right)$ in terms of $V\left(S_{k}\right)$ when an expansion occurs (for sake of simplicity, we can assume that $y_{k}^{n}=0$).
5. Give the value of $V\left(S_{k+1}\right)$ in terms of $V\left(S_{k}\right)$ when a shrink step occurs.

Exercice 2 On a DFO trust region method

Consider a DFO trust region method : denote $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the function to minimize and m_{k} the quadratic model at iteration k around the current point x_{k} (in a ball of radius Δ_{k}). Assume that the hessian of m_{k} at x_{k}, H_{k}, has at least one negative eigenvalue and let τ_{k} its minimal eigenvalue. Denote g_{k} the gradient of m_{k} at x_{k}.

1. Recall the general principles of a DFO trust region method
2. Give the expression of $s \mapsto m_{k}\left(x_{k}+s\right)$ with respect to g_{k} and H_{k}.
3. Prove that there exists a vector $s_{k} \in \mathbb{R}^{n}$ such that

$$
\left\{\begin{array}{l}
<s_{k}, g_{k}>\leq 0 \\
\left\|s_{k}\right\|=\Delta_{k} \\
<s_{k}, H_{k} s_{k}>=\tau_{k} \Delta_{k}^{2}
\end{array}\right.
$$

4. Give a positive lower bound of $m_{k}\left(x_{k}\right)-m_{k}\left(x_{k}+s_{k}\right)$ in terms of τ_{k} and Δ_{k}.

Exercice 3 On the DIRECT method
Consider the 1D function $f(x)=x^{4}-2 x$ to be minimized on the interval $[-1,3]$.
Make three iterations of the DIRECT method on this case.
We recall below its general principle (issued from Jones et al, JOGO, 1993) :

Univariate direct Algorithm.

Step 1. Set $m=1,\left[a_{1}, b_{1}\right]=[\ell, u], c_{1}=\left(a_{1}+b_{1}\right) / 2$, and evaluate $f\left(c_{1}\right)$. Set $f_{\text {min }}=f\left(c_{1}\right)$. Let $t=0$ (iteration counter).
Step 2. Identify the set S of potentially optimal intervals.
Step 3. Select any interval $j \in S$.
Step 4. Let $\delta=\left(b_{j}-a_{j}\right) / 3$, and set $c_{m+1}=c_{j}-\delta$ and $c_{m+2}=c_{j}+\delta$. Evaluate $f\left(c_{m+1}\right)$ and $f\left(c_{m+2}\right)$ and update $f_{\text {min }}$.
Step 5. In the partition, add the left and right subintervals
$\left[a_{m+1}, b_{m+1}\right]=\left[a_{j}, a_{j}+\delta\right]$, center point c_{m+1},
$\left[a_{m+2}, b_{m+2}\right]=\left[a_{j}+2 \delta, b_{j}\right]$, center point c_{m+2}.
Then modify interval j to be the center subinterval by setting
$\left[a_{j}, b_{j}\right]=\left[a_{j}+\delta, a_{j}+2 \delta\right]$.
Finally, set $m=m+2$.
Step 6. Set $S=S-\{j\}$. If $S \neq \varnothing$, go to Step 3.

Fig. 6. Set of potentially optimal intervals.

