DERVATIVE FREE OPTIMIZATION

Exercice 1 On the pattern search method
Consider the classical pattern search method for the minimization of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with a fixed set of directions \mathcal{D} such that

$$
\forall d \in \mathcal{D}, \quad\|d\|=1
$$

and

$$
\kappa=\min _{\|v\|=1} \max _{d \in \mathcal{D}} v^{T} d>0
$$

Denote $\left(\boldsymbol{x}_{k}\right)_{k \in \mathbb{N}}$ the sequence of points of the pattern search method and $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ the associated step size. We recall that the acceptation criterion for a new point is the following :

$$
f\left(x_{k}+\alpha_{k} d\right)<f\left(x_{k}\right)-c \frac{\alpha_{k}^{2}}{2}
$$

where $c>0$ is fixed and that $\alpha_{k+1}=\theta \alpha_{k}$ (respectively $\alpha_{k+1}=\gamma \alpha_{k}$) in case of failure (respectively success) with $\theta \in] 0,1[$ and $\gamma \geq 1$.
The following lemma (admitted here) can be proven :
Lemma Assume that f is $C^{1}, \nabla f$ is ν-Lipschitz and that f is bounded from below by $m \in \mathbb{R}$. Then, the sequence of step size satisfies for all $N \in \mathbb{N}$:

$$
\sum_{k=0}^{N} \alpha_{k}^{2} \leq \frac{2 \gamma^{2}}{c\left(1-\theta^{2}\right)}\left(\frac{c \alpha_{0}^{2}}{2 \gamma^{2}}+f\left(x_{0}\right)-m\right)
$$

1. Prove that

$$
\forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \quad\left|f(y)-f(x)-\nabla f(x)^{T}(y-x)\right| \leq \frac{\nu}{2}\|y-x\|^{2}
$$

2. Prove that $\lim _{k \rightarrow \infty} \alpha_{k}=0$ and that the set of failure steps is infinite.
3. Prove that for a failure step

$$
\left\|\nabla f\left(x_{k}\right)\right\| \leq \frac{c+\nu}{2 \kappa} \alpha_{k}
$$

4. Prove that

$$
\liminf _{k \rightarrow \infty}\left\|\nabla f\left(x_{k}\right)\right\|=0
$$

Exercice 2 On the Nelder Mead algorithm

1. Recall briefly the main principles of the Nelder Mead algorithm. A 2D illustration of the possible steps can be used.
2. Prove that no shrinkage steps are performed when the Nelder Mead algorithm is applied to a strictly convex function. We recall that f : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex if and only if :

$$
\left.\forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \forall \lambda \in\right] 0,1[, f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y) \text { if } x \neq y
$$

Exercice 3 On the Nelder Mead algorithm

Consider the Nelder Mead algorithm for the sphere function in \mathbb{R}^{2} :

$$
f(x, y)=x^{2}+y^{2}
$$

and the initial simplex made of $A=(4,5), B=(5,3)$ and $C=(5,6)$.
Compute the best obtained value by this algorithm after one iteration.

Exercice 4 On the Cauchy Step in a trust region method
Consider the following quadratic model in the closed ball $B\left(x_{0}, R\right)$ of \mathbb{R}^{n} :

$$
m\left(x_{0}+h\right)=c+<g, h>+\frac{1}{2}^{t} h H h
$$

where $c \in \mathbb{R}, g \in\left(\mathbb{R}^{n}\right)^{*}$ and $H \in \mathcal{M}_{n}(\mathbb{R})$.
We denote by t_{c} the Cauchy step in the steepest descent direction, that is :

$$
t_{c}=\operatorname{argmin}\left\{m\left(x_{0}-t g\right), t>0, x_{0}-t g \in B\left(x_{0}, R\right)\right\}
$$

The aim is to prove that

$$
m\left(x_{0}\right)-m\left(x_{0}-t_{c} g\right) \geq \frac{1}{2}\|g\| \min \left(\frac{\|g\|}{\| \| H\| \|}, R\right)
$$

where $\frac{\|g\|}{\||\mid H\| \|}=+\infty$ if $H=0$.

1. First, we assume that ${ }^{t} g H g>0$. Prove that in this case

$$
t_{c}=\min \left(\frac{R}{\|g\|}, \frac{\|g\|^{2}}{t_{g H g}}\right)
$$

and conclude
2. Assume now that ${ }^{g} \mathrm{Hg} \leq 0$. Prove that $t_{c}=\frac{R}{\|g\|}$ in this case and conclude.

Exercice 5 On the Lagrange interpolation

Consider a set $\mathcal{Y}=\left\{X_{1}, \ldots, X_{p}\right\}$ of p points in \mathbb{R}^{n} where p is the cardinality of the polynomial space $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right](d \geq 1)$. Assume that the set is poised. Denote $\mathcal{B}=\left\{\Phi_{1}, \ldots, \Phi_{p}\right\}$ the monomial basis of $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right]$.

The following algorithm is proposed to define a new polynomial basis :
Initialisation : set $l_{j}=\Phi_{j}$ for all $j=1, \ldots, p$.
For $i=1,2, \ldots, p$:

- Point selection : find $j_{0}=\operatorname{argmax}_{i \leq j \leq p}\left|l_{i}\left(X_{j}\right)\right|$. If $l_{i}\left(X_{j_{0}}\right)=0$ then stop (the set is not poised). Otherwise, swap points X_{i} and $X_{j_{0}}$ in \mathcal{Y}.
- Normalisation : change $l_{i}(x) \leftarrow \frac{l_{i}(x)}{l_{i}\left(X_{i}\right)}$
- Orthogonalization: for $j=1, \ldots, p, j \neq i$, change $l_{j}(x) \leftarrow l_{j}(x)-l_{j}\left(X_{i}\right) l_{i}(x)$

1. If $d \in\{1,2\}$, what is the value of p for a given n ?
2. Give a condition on a matrix, built with \mathcal{B} and \mathcal{Y}, so that the set is poised.
3. Prove that the previous algorithm transforms the basis \mathcal{B} into the Lagrange basis (which definition will be recalled).

Exercice 6 On the trust region method

Consider the following function on \mathbb{R}^{2} :

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}+\left(10-x_{1}\right) x_{2} \quad \text { if } x_{1}<10 \\
x_{1}^{2}+x_{2}^{2} \quad \text { if } x_{1} \geq 10
\end{array}\right.
$$

and the following set of initial points

$$
\mathcal{Y}_{0}=\{(11,1),(11,0),(10,-1),(10,1),(10,0),(9,0)\}
$$

1. Prove that the first quadratic model around the initial point $x_{0}=(10,0)$ is equal to

$$
m_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

2. Assume that is initial radius Δ_{0} is equal to 2 , what is the next possible iterate x_{0}^{+}?
3. Compute the ratio

$$
\rho_{0}=\frac{f\left(x_{0}\right)-f\left(x_{0}^{+}\right)}{m_{0}\left(x_{0}\right)-m_{0}\left(x_{0}^{+}\right)}
$$

Is the point x_{0}^{+}accepted and what is the set \mathcal{Y}_{1} ?

Exercice 7 On a first order DFO trust region method
The following algorithm in Matlab gives an example of a first order DFO trust region method. The objective is here to use a classical trust region method in dimension n, based on a linear interpolation of the function to minimize f made with a Lagrange interpolation from a set of p points :

```
n=3; % dimension
p=n+1;
gamma=1.1;
theta=0.9;
eta=0.01;
Nstep=100;
X=rand(n,1); delta=0.1; % initialization
Xla=[X,X*ones(1,p-1)+delta*(ones(n,p-1)-2*rand(n,p-1))];
Xlatot=Xla; % total set of possible interpolation points
Xtot=[X];
for i=1:Nstep
    k=size(Xlatot,2);
    u=zeros(k,1);
    for j=1:k
        u(j)=norm(Xlatot (:,j)-X);
    end
    [a,b]=sort(u);
    Xla=Xlatot(:,b(1:p)); % choice of the nearest p points from X
    w=linlagrange(X,Xla);g=w(2:p);A=zeros(n,n);b=zeros(n,1);
    hplus=linprog(g, A , b, A , b,-delta*ones(n,1), delta*ones (n,1));
    Xplus=X+hplus;
    Xlatot=[Xlatot,Xplus];
    rhok=(f(X)-f(Xplus))/(f(X)-linmodel(g,f(X),hplus)+1E-16);
    if (rhok>eta)
        X=Xplus;delta=gamma*delta;
    else
        delta=theta*delta;
    end
    Xtot=[Xtot,X];
end
disp('best value:');disp(X)
```

In particular, the Matlab instruction linprog is used to minimize the function $m(x)=g^{\prime} * x$ for $-\delta \leq x_{i} \leq \delta .(1 \leq i \leq n)$. The functions linlagrange, linmodel and f need to be defined to complete the code.

1. Give a global description of the script above.
2. Write a possible function linmodel.m
3. Write a possible function linlagrange.m, either in the particular case where $n=2$ or in the general case.

Exercice 8 On the Kriging model

The Kriging model is a surrogate model of a given function $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that can be written as :

$$
\hat{J}(X)=\sum_{i=1}^{N} \omega\left(X_{i}\right) J\left(X_{i}\right)
$$

where the N points $X_{i} \in \mathbb{R}^{n}$ have been previously evaluated by J.
In this expression, J and \hat{J} are viewed as a random fields where J is assumed to have a zero mean value everywhere. Moreover, the covariance between the evaluation at two points X and Y has the following form :

$$
\operatorname{cov}(J(X), J(Y))=c(X, Y)
$$

where the function $c: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is supposed to be known.
At each point $X \in \mathbb{R}^{n}$, the random field \hat{J} is defined so as to minimize the standard deviation between $J(X)$ and $\hat{J}(X)$, while ensuring $E(\hat{J}(X))=$ $E(J(X))$.

1. Prove that

$$
\hat{J}(X)={ }^{t} K C^{-1} z
$$

where $K={ }^{t}\left(c\left(X_{1}, X\right), \ldots, c\left(X_{N}, X\right)\right), z=^{t}\left(J\left(X_{1}\right), \ldots J\left(X_{N}\right)\right)$ and C is a $N \times N$ matrix such that $C_{i, j}=c\left(X_{i}, X_{j}\right)$.
2. Verify that the Kriging function is an interpolation model, that is $\hat{J}\left(X_{i}\right)=$ $J\left(X_{i}\right)$ for all $i \in\{1, \ldots, N\}$.
3. Give an expression of $\operatorname{Var}(J(X)-\hat{J}(X))$ using $c(X, X), K$ and C.

Exercice 9 On the $R B F$ and the kriging method

Consider the two following metamodels for a given function f defined on \mathbb{R}^{n} :

- A RBF metamodel with a radial basis function

$$
h(r)=e^{-c r^{2}}
$$

- A kriging model with a covariance function

$$
c(x, y)=\theta_{1}+\theta_{2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-y_{i}\right)^{2}}{2 \sigma_{i}}\right)
$$

Prove that for a set of parameters for the kriging that will be given, the two metamodels are equal.

