Final Exam - Derivative Free Optimization (Part I)

Anne Auger
anne.auger@inria.fr

February 2017

The number of points is indicative. The answers should be carefully justified.

Exercice 1 (7 points)

We consider the following test functions:

- $f_{1}(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}$
- $f_{2}(\mathbf{x})=\left(\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right)^{4}$
- $f_{3}(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{n} 10000^{\frac{i-1}{n-1}} x_{i}^{2}$

1. Give for f_{1} and f_{3} the Hessian matrix and its condition number.

In order to minimize the functions f_{1}, f_{2}, f_{3} in dimension $n=10$, we are using the $(1+1)$ ES algorithm with one-fifth success rule for adapting the step-size (no covariance matrix adaptation mechanism is used, only step-size adaptation). The initial step-size σ_{0} is set to 10 and the initial mean vector to $(100,100, \ldots, 100)^{T}$. We are running the algorithm 5 times independently on each function and we report the number of calls to the function (or number of function evaluations) that the algorithm needs to reach a function value strictly smaller than 10^{-6}. The results are presented in the following table

function	\# Evals to reach				10^{-6}
for	5	different runs			
f_{1}	830	825	946	695	749
f_{2}	489	566	537	509	378
f_{3}	304480	223808	235580	194545	282329

2. Comment the differences observed between f_{1}, f_{2} and f_{3}.
3. Why do we observe a difference between f_{1} and f_{2} ? How can we change the stopping criterion to not see a difference anymore?
4. Why do we observe a difference between f_{1} and f_{3} ? Which algorithm could improve the results observed on f_{3} ? [explain].

We consider now the functions

- $f_{4}(\mathbf{x})=10^{4} x_{1}^{2}+\sum_{i=2}^{n} x_{i}^{2}$
- $f_{5}(\mathbf{x})=f_{4}(\mathbf{R x})$, where $\mathbf{R} \in \mathcal{M}_{n}(\mathbb{R})$ is a rotation matrix sampled randomly.

We are using the CMA-ES algorithm to minimize those two functions as well as a variant of CMA-ES called sep-CMA-ES where at each iteration the covariance matrix C for sampling candidate solutions is diagonal.
5. Give the geometric shape of the iso-density lines of the Gaussian vector used to sampled candidate solutions in the sep-CMA-ES algorithm.
In dimension $n=10$, we initialize both algorithms setting the mean vector to $(100,100, \ldots 100)^{T}$, the initial step-size to 10 and the initial covariance matrix to the identity. We are running the algorithm three times independently. We report the number of function evaluations to reach a function value strictly smaller than 10^{-6}. The results are presented in the following table:

	\# Evals to reach 10^{-6} for 3 different runs					
function	CMA-ES			sep-CMA-ES		
f_{4}	4242	3902	4322	2172	2082	2512
f_{5}	4062	4262	4002	161072	168222	157132

6. Comment for both algorithms the differences observed between f_{4} and f_{5}.
7. Why do we observe such a big difference between f_{4} and f_{5} for the sep-CMA-ES algorithm. Why don't we observe such a difference for the CMA-ES algorithm?
8. How can we explain that the sep-CMA-ES algorithm is faster than the CMA-ES algorithm on the function f_{4} ?

Exercice 2 (3 points)

We consider the Rastrigin test function defined as

$$
f(\mathbf{x})=10 n+\sum_{i=1}^{n}\left(x_{i}^{2}-10 \cos \left(2 \pi \mathbf{x}_{i}\right)\right)
$$

1. What is the optimum of f ?
2. Is the function separable, multimodal? [We expect a small proof to justify the answers]

The CMA-ES algorithm is used to minimize the Rastrigin function in dimension $n=5$. It is initialized with a mean vector equal to $(1, \ldots, 1)$ and a step-size equal to 5 . Two trials are performed, the first one using the default population size of CMA-ES, that is $\lambda=8$ in dimension 5 . The second one with a larger population size equal to $\lambda=64$. The trials are presented in Figure 1 (one trial on top, one trial below).
3. Are both trials converging to the global optimum of the function? [explain]
4. Identify which figure correspond to the trial with population size equal to $\lambda=8$ and which figure correspond to the trial with population size equal to $\lambda=64$. [explain your reasonning]

B

Figure 1: Single trials of the CMA-ES algorithm on the Rastrigin function. Identify the population size used for each trial.

DERVATIVE FREE OPTIMIZATION FINAL EXAM, PART 2

Exercice 1 On the Nelder Mead algorithm

1. Recall briefly the main principles of the Nelder Mead algorithm. A 2D illustration of the possible steps can be used.
2. Prove that no shrinkage steps are performed when the Nelder Mead algorithm is applied to a strictly convex function. We recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex if and only if :

$$
\left.\forall(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \forall \lambda \in\right] 0,1[, f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y) \text { if } x \neq y
$$

Exercice 2 On the Lagrange interpolation

Consider a set $\mathcal{Y}=\left\{X_{1}, \ldots, X_{p}\right\}$ of p points in \mathbb{R}^{n} where p is the cardinality of the polynomial space $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right](d \geq 1)$. Assume that the set is poised. Denote $\mathcal{B}=\left\{\Phi_{1}, \ldots, \Phi_{p}\right\}$ the monomial basis of $\mathbb{R}_{d}\left[x_{1}, \ldots, x_{n}\right]$.
The following algorithm is proposed to define a new polynomial basis :
Initialisation : set $l_{j}=\Phi_{j}$ for all $j=1, \ldots, p$.
For $i=1,2, \ldots, p$:

- Point selection : find $j_{0}=\operatorname{argmax}_{i \leq j \leq p}\left|l_{i}\left(X_{j}\right)\right|$. If $l_{i}\left(X_{j_{0}}\right)=0$ then stop (the set is not poised). Otherwise, swap points X_{i} and $X_{j_{0}}$ in \mathcal{Y}.
- Normalisation : change $l_{i}(x) \leftarrow \frac{l_{i}(x)}{l_{i}\left(X_{i}\right)}$
- Orthogonalization : for $j=1, \ldots, p, j \neq i$, change $l_{j}(x) \leftarrow l_{j}(x)-l_{j}\left(X_{i}\right) l_{i}(x)$

1. If $d \in\{1,2\}$, what is the value of p for a given n ?
2. Give a condition on a matrix, built with \mathcal{B} and \mathcal{Y}, so that the set is poised.
3. Prove that the previous algorithm transforms the basis \mathcal{B} into the Lagrange basis (which definition will be recalled).

Exercice 3 On a first order DFO trust region method
The following algorithm in Matlab gives an example of a first order DFO trust region method. The objective is here to use a classical trust region method in dimension n, based on a linear interpolation of the function to minimize f made with a Lagrange interpolation from a set of p points :

```
n=3; % dimension
p=n+1;
gamma=1.1;
theta=0.9;
eta=0.01;
Nstep=100;
X=rand(n,1); delta=0.1; % initialization
Xla=[X,X*ones(1,p-1)+delta*(ones(n,p-1)-2*rand(n,p-1))];
Xlatot=Xla; % total set of possible interpolation points
Xtot=[X];
for i=1:Nstep
    k=size(Xlatot,2);
    u=zeros(k,1);
    for j=1:k
        u(j)=norm(Xlatot(:,j)-X);
    end
        [a,b]=sort(u);
    Xla=Xlatot(:,b(1:p)); % choice of the nearest p points from X
    w=linlagrange(X,Xla);g=w(2:p);A=zeros(n,n);b=zeros(n,1);
    hplus=linprog(g,A,b,A,b,-delta*ones(n,1),delta*ones(n,1));
    Xplus=X+hplus;
    Xlatot=[Xlatot,Xplus];
    rhok=(f(X)-f(Xplus))/(f(X)-linmodel(g,f(X),hplus)+1E-16);
    if (rhok>eta)
        X=Xplus;delta=gamma*delta;
    else
        delta=theta*delta;
    end
    Xtot=[Xtot,X];
end
disp('best value:'); disp(X)
```

In particular, the Matlab instruction linprog is used to minimize the function $m(x)=g^{\prime} * x$ for $-\delta \leq x_{i} \leq \delta .(1 \leq i \leq n)$. The functions linlagrange, linmodel and f need to be defined to complete the code.

1. Give a global description of the script above.
2. Write a possible function linmodel.m
3. Write a possible function linlagrange.m, either in the particular case where $n=2$ or in the general case.
