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The number of points is indicative. The answers should be carefully justified.

Exercice 1 (7 points)

We consider the following test functions:
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1. Give for f1 and f3 the Hessian matrix and its condition number.

In order to minimize the functions f1, f2, f3 in dimension n = 10, we are using the (1+1)-

ES algorithm with one-fifth success rule for adapting the step-size (no covariance matrix

adaptation mechanism is used, only step-size adaptation). The initial step-size σ0 is set to

10 and the initial mean vector to (100, 100, . . . , 100)T . We are running the algorithm 5 times

independently on each function and we report the number of calls to the function (or number

of function evaluations) that the algorithm needs to reach a function value strictly smaller

than 10
−6

. The results are presented in the following table

function # Evals to reach 10
−6

for 5 different runs

f1 830 825 946 695 749

f2 489 566 537 509 378

f3 304480 223808 235580 194545 282329

2. Comment the differences observed between f1, f2 and f3.

3. Why do we observe a difference between f1 and f2? How can we change the stopping criterion

to not see a difference anymore?

4. Why do we observe a difference between f1 and f3? Which algorithm could improve the

results observed on f3? [explain].
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We consider now the functions

• f4(x) = 10
4x21 +

�n
i=2 x

2
i

• f5(x) = f4(Rx), where R ∈ Mn(R) is a rotation matrix sampled randomly.

We are using the CMA-ES algorithm to minimize those two functions as well as a variant of

CMA-ES called sep-CMA-ES where at each iteration the covariance matrix C for sampling

candidate solutions is diagonal.

5. Give the geometric shape of the iso-density lines of the Gaussian vector used to sampled

candidate solutions in the sep-CMA-ES algorithm.

In dimension n = 10, we initialize both algorithms setting the mean vector to (100, 100, . . . 100)T ,
the initial step-size to 10 and the initial covariance matrix to the identity. We are running

the algorithm three times independently. We report the number of function evaluations to

reach a function value strictly smaller than 10
−6

. The results are presented in the following

table:

# Evals to reach 10
−6

for 3 different runs

function CMA-ES sep-CMA-ES

f4 4242 3902 4322 2172 2082 2512

f5 4062 4262 4002 161072 168222 157132

6. Comment for both algorithms the differences observed between f4 and f5.

7. Why do we observe such a big difference between f4 and f5 for the sep-CMA-ES algorithm.

Why don’t we observe such a difference for the CMA-ES algorithm?

8. How can we explain that the sep-CMA-ES algorithm is faster than the CMA-ES algorithm

on the function f4?

Exercice 2 (3 points)

We consider the Rastrigin test function defined as

f(x) = 10n+

n�

i=1

(x2i − 10 cos(2πxi))

1. What is the optimum of f?

2. Is the function separable, multimodal? [We expect a small proof to justify the answers]

The CMA-ES algorithm is used to minimize the Rastrigin function in dimension n = 5. It

is initialized with a mean vector equal to (1, . . . , 1) and a step-size equal to 5. Two trials

are performed, the first one using the default population size of CMA-ES, that is λ = 8 in

dimension 5. The second one with a larger population size equal to λ = 64. The trials are

presented in Figure 1 (one trial on top, one trial below).

3. Are both trials converging to the global optimum of the function? [explain]

4. Identify which figure correspond to the trial with population size equal to λ = 8 and which

figure correspond to the trial with population size equal to λ = 64. [explain your reasonning]
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Figure 1: Single trials of the CMA-ES algorithm on the Rastrigin function. Identify the population

size used for each trial.
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DERVATIVE FREE OPTIMIZATION FINAL EXAM, PART 2

Exercice 1 On the Nelder Mead algorithm

1. Recall briefly the main principles of the Nelder Mead algorithm. A 2D

illustration of the possible steps can be used.

2. Prove that no shrinkage steps are performed when the Nelder Mead algo-

rithm is applied to a strictly convex function. We recall that f : Rn → R
is strictly convex if and only if :

∀(x, y) ∈ Rn×Rn, ∀λ ∈]0, 1[, f(λx+(1−λ)y) < λf(x)+(1−λ)f(y) if x �= y

Exercice 2 On the Lagrange interpolation

Consider a set Y = {X1, ..., Xp} of p points in Rn where p is the cardinality

of the polynomial space Rd[x1, ..., xn] (d ≥ 1). Assume that the set is poised.

Denote B = {Φ1, ...,Φp} the monomial basis of Rd[x1, ..., xn].

The following algorithm is proposed to define a new polynomial basis :

Initialisation : set lj = Φj for all j = 1, ..., p.

For i = 1, 2, ..., p :

– Point selection : find j0 = argmaxi≤j≤p|li(Xj)|. If li(Xj0) = 0 then stop (the

set is not poised). Otherwise, swap points Xi and Xj0 in Y.

– Normalisation : change li(x) ←
li(x)

li(Xi)

– Orthogonalization : for j = 1, ..., p, j �= i, change lj(x) ← lj(x)− lj(Xi)li(x)

1. If d ∈ {1, 2}, what is the value of p for a given n ?

2. Give a condition on a matrix, built with B and Y , so that the set is

poised.

3. Prove that the previous algorithm transforms the basis B into the La-

grange basis (which definition will be recalled).
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Exercice 3 On a first order DFO trust region method

The following algorithm in Matlab gives an example of a first order DFO trust

region method. The objective is here to use a classical trust region method in

dimension n, based on a linear interpolation of the function to minimize f made

with a Lagrange interpolation from a set of p points :

n=3; % dimension

p=n+1;

gamma=1.1;

theta=0.9;

eta=0.01;

Nstep=100;

X=rand(n,1); delta=0.1; % initialization

Xla=[X,X*ones(1,p-1)+delta*(ones(n,p-1)-2*rand(n,p-1))];

Xlatot=Xla; % total set of possible interpolation points

Xtot=[X];

for i=1:Nstep

k=size(Xlatot,2);

u=zeros(k,1);

for j=1:k

u(j)=norm(Xlatot(:,j)-X);

end

[a,b]=sort(u);

Xla=Xlatot(:,b(1:p)); % choice of the nearest p points from X

w=linlagrange(X,Xla);g=w(2:p);A=zeros(n,n);b=zeros(n,1);

hplus=linprog(g,A,b,A,b,-delta*ones(n,1),delta*ones(n,1));

Xplus=X+hplus;

Xlatot=[Xlatot,Xplus];

rhok=(f(X)-f(Xplus))/(f(X)-linmodel(g,f(X),hplus)+1E-16);

if (rhok>eta)

X=Xplus;delta=gamma*delta;

else

delta=theta*delta;

end

Xtot=[Xtot,X];

end

disp(’best value:’);disp(X)

In particular, the Matlab instruction linprog is used to minimize the function

m(x) = g� ∗ x for −δ ≤ xi ≤ δ. (1 ≤ i ≤ n). The functions linlagrange,

linmodel and f need to be defined to complete the code.

1. Give a global description of the script above.

2. Write a possible function linmodel.m

3. Write a possible function linlagrange.m, either in the particular case

where n = 2 or in the general case.


