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1. Abstract

A 1D model for the simulation of blood flow in arteries is studied here. Derived from the general 3D
equations, it computes the section area of the artery and the volumic flux of the flow for each longitu-
dinal position and time. The present article deals with the identification of the main parameter of this
model linked to the artery compliance. Even in the case of an artery experiencing a loss of compliance
in some portion, the inverse problem is successfully solved by using a reduced number of experimental
or numerical measurements.
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3. Introduction

In order to reduce the cost of complex 3D fluid-structure computations of blood flow in arteries, a
one dimensional model have been developed based on the averaging of the general three dimensional
equations [1, 3]. Under a certain number of hypotheses for the artery flow and geometry, it computes
the section area A(t, z) and the volumic flux Q(t, z) at any longitudinal position z and time t. Such
model is interesting for three main reasons : first, it drastically reduces the computational time of the
3D model, secondly, its two unknowns are quantities that can be experimentally obtained by non invasive
techniques and finally, it allows to recover all the other hemodynamic variables like blood pressure that
are more difficult to measure.

The general objective of this work is to show that the parameters of this 1D model can be fitted
either with the results of 3D computations or with experimental values measured at a finite number of
positions z and times t. In particular, it includes the case of an artery with a large compliance step which
occurs when an artery is partially obturated by atherosclerotic plaques. In this case, it can be important
to locate precisely the position of the plaque before putting a permanent metallic implant used to prop
open arteries and called stent [2]. Even after this operation, note that the artery will still experience a
compliance step at the stent location.

The main parameter of the 1D model that has to be fixed is a function of z, called β, directly linked
to the compliance value of the artery. In order to do so, an inverse problem is solved by means of Genetic
Algorithms. In section 4, the direct computation of the 1D model is presented in two particular cases :
a healthy artery with a fixed compliance and a disease one with a large loss of compliance between two
points. In section 5, the corresponding inverse problem is solved by fitting the 1D model with synthetic
data, issued either from a 3D or a 1D computation. The problem of the amount of information needed
to recover the correct shape of β is in particular discussed.

4. The 1D model : presentation and resolution of the direct problem

4.1 From 3D to 1D
The blood velocity and pressure in an artery satisfy the following Navier Stokes equations in a 3D domain
similar to the one depicted in Figure 1 :





∂u

∂t
+ (u · ∇)u +

1
ρ
∇p + div

(
ν
∇u + (∇u)T

2

)
= 0

div(u) = 0
(1)

where ρ and ν respectively denote the density and the kinematic viscosity of the blood. Because of the
compliance of the arterial wall, theses equations must be coupled with an appropriate model of the
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vessel wall dynamics. Moreover, this compliance can vary along the artery, for instance because of the
formation of atherosclerotic plaques or the presence of a stent (see Figure 1).

Fig. 1 – Blood flow in an artery : the 3D model

In order to reduce the computational time needed to solve these equations, a 1D model has been
proposed by assuming that the artery has a cylindrical geometry with a circular cross section (see Figure
2).

After averaging the 3D Navier Stokes equations over each cross section, a system with two unknowns,
A(t, z) the section area at time t and position z ∈ [0, L], and Q(t, z) the volumic flux, is derived (see [1]
for more details) :
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In this system, p denotes the average pressure and is determined by the following law :

p(t, z) = β(
√

A−
√

A0) (3)

where A0 represents the section area of the artery at rest.
The coefficients Kr and β appearing in the model are respectively linked to the blood viscosity and

the elastic properties of the artery. In view of the possible applications, β will thus take the form of a
function of z. A formal derivation from the 3D to the 1D model lead to the following expression for the
parameter β :

β(z) =
4
√

πh0E(z)
3A0

(4)

where h0 and E(z) respectively denote the thickness and the Young modulus of the vessel wall.

Fig. 2 – Blood flow in an artery : the 1D model

The 1D model (2)-(3) can be rewritten in a conservative form :

∂U

∂t
+

∂F (U)
∂z

= B(U) (5)
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where U =
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)
and
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0

−Kr
Q

A
+

A

ρ

dβ

dz
(
√

A0 − 2
3

√
A)




It can be observed that this system is hyperbolic, as the Jacobian

H =
∂F

∂U
=

( 0 1
β
√

A

2ρ
− (

Q

A
)2 2

Q

A

)

has always two real and distinct eigenvalues for all the allowable values of U . The system (5) is then
completed by two appropriate boundary conditions, one at each end. A pressure profile is in particular
imposed at the entrance (see [1] for more details).

4.2 Numerical discretization
The equations of the 1D model are discretized in their conservative form (5) by using a second order
Taylor Galerkin scheme. Denote ∆t the chosen time step, then the vector of unknowns Un at time
tn = n∆t satisfies the following time-marching scheme :

Un+1 = Un −∆t
∂

∂z
(Fn +

∆t

2
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∂U

n

Bn)− ∆t2

2
(
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∂z
− ∂

∂z
(
∂F

∂U

n ∂Fn

∂z
)) + ∆t(Bn +

∆t

2
∂B

∂U

n

Bn)

The spatial discretization is then done by using linear finite elements on the subdivision (zi)i∈{0,...,N} of
[0, L] (see [1] for more details).

4.3 Numerical tests
Two numerical tests have been performed in order to see the influence of a compliance loss on the
transmission of a pressure impulse. In both cases, the same pulsatile pressure, displayed on Figure 3, is
imposed at the entrance of an artery of length L = 4cm.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
−2000

0

2000

4000

6000

8000

10000

12000

Fig. 3 – Blood pressure at entrance (in dynes/cm2)

For both cases, the section area at rest A0 is chosen constant and equal to 0.780362 cm2 whereas
Kr = 0.75. On the contrary, the coefficient β is different between the two test cases (see below).

The initial conditions for A and Q are chosen constant in space, respectively A(0, z) = A0 and
Q(0, z) = 0.

Test cas 1 : artery with a constant compliance
In this first test case, the compliance is chosen constant and taken equal to its formal expression (4)
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with E0 = 4.106 dynes/cm2 and h0 = 0.1 cm, that is :

βformal = 1211372 dynes/cm3

A uniform spatial discretization of [0, L] is chosen with N = 128 and the time step is taken equal to
10−5.

The results are depicted on Figure 4. The two unknowns A and Q, as well as the pressure issued from
them by the relation (3), are displayed at three different points inside the artery, respectively located at
z = L

4 , L
2 and 3L

4 and called points P , M and D (see Figure 2).
In this case, it can be observed that the pressure impulse travels along the artery at a constant speed

and with minor changes during its propagation.
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Fig. 4 – Section area A (top left), volumic flux Q (bottom left) and pressure (right) at points P , M and
D for the constant compliance case.

Test case 2 : artery with a variable compliance
The second test case studies the propagation of the same impulse pressure in a case where the compliance
of the artery is supposed to be variable with z.

Fig. 5 – Function z → β(z), variable compliance case

More precisely, the value of β is taken 10 times higher in a portion located between a1 = 1.5 cm and
a2 = 2.5 cm. Such abrupt change can be linked for instance by the presence of a stent or of atherosclerotic
plaques at this location inducing a severe loss of compliance. Numerically, the function β → β(z) has to

be at least C2 because of the presence of the term
dβ

dz
in B(U). A smoothing procedure with a small
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transition parameter δ is thus done leading to the shape depicted in Figure 5 with

(β1, β2) = (βformal, 10βformal) and (a1, a2) = (1.5, 2.5)

Because of the large value of
dβ

dz
near the points z = a1 and z = a2, the spatial mesh has to be

refined locally and the time step is now equal to 3.10−6.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
−5

0

5

10

15

20

25

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
−10000

−5000

0

5000

10000

15000

20000

25000

30000

Fig. 6 – Artery section (top left), blood flow rate (bottom left) and pressure (right) at points P , M , D
for the variable compliance case.

The results depicted on Figure 6 show that the pressure wave is partially reflected at z = a1, thus
giving a more complex pressure profile downstream and also a decrease of the next pressure peaks. Note
also that the propagation speed increases inside the disease portion while its section area remains almost
constant.

5 The 1D model : resolution of the inverse problem

5.1 Objectives and resolution method
The aim of this section is to fit the 1D model, more precisely the value of the parameter β (variable or
not), in order to be able to recover, either a 3D computation or an experimental result. Another problem
that is studied here is to find the amount of information needed on the 1D model that would allow to
recover all its parameters.

Both objectives are in the domain of parameters identification and can thus be view as inverse pro-
blems. To find the global minima of such complex cost functions, Evolutionary Algorithms like Genetic
Algorithms have shown their efficiency for more than a decade. Inspired from the Darwinian theory of
evolution of species [4], they have been applied in numerous applicative domains including the biomedi-
cal field, cite for instance the improvement of the aerodynamics of car shapes [5] or of various medical
devices like pacemakers [5] or stents [6].

5.2 The inverse problem with a constant compliance
The first inverse problem that is studied here concerns the case of an artery with a constant compliance.
The objective is to find the optimal constant β that would allow the 1D model to fit as best as possible
the corresponding 3D computation. In particular, it will corroborate or deny the formal expression (4)
as the best choice for β.

To this aim, a preliminary 3D computation with a fluid structure model has first been done on an
artery of the same type as the one used in the previous section and with the same pressure impulse. The
3D Navier Stokes equations (1) with a linear Venant Kirchoff model for the structure have been solved
with the C++ library LifeV (see [3] for more details). The results of this computation at a particular
time are given on Figure 7.
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Fig. 7 – Solution of the 3D model at t = 50.10−4 (left : fluid velocity, right : wall displacement)

To find the optimal value of β for the associated 1D model, an error-type cost function is defined. It
uses the computed value with the 3D model of the section area A3D and the volumic flux Q3D for the
three points P , M and D previsouly defined (see Figure 2) and at the times ti = i10−4 (0 ≤ i ≤ 78).
More precisely :

J1(β) =
∑

pts∈{P,M,D}

78∑

i=0

(
|A(ti, pts)−A3D(ti, pts)|2 +

1
10
|Q(ti, pts)−Q3D(ti, pts)|2

)

In [3], the same problem had been tackled by using a deterministic optimization method and by
computing the gradient of J1 with an adjoint formulation. It is solved here by using a real valued
Genetic Algorithm with 100 evaluations of the direct problem (5 individuals and 20 generations). As the
shape of the function β → J1(β) exhibits a convex behavior, both methods succeed to locate the global
minimum of J1, namely

βopt = 0.5490284 ∗ βformal = 665077

It is interesting to notice that the optimal value of β which allows the 1D model to fit to the corresponding
3D model is far below the value issued from a formal derivation.
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Fig. 8 – Section area (top left), volumic flux (bottom left) and pressure (right) at points P , M and D
for the 3D and the optimal 1D case, artery with constant compliance.

A comparison between the values of section area, volumic flux and pressure issued from the 3D model
and the 1D model with β = βopt at points P M and D is visible on Figure 8. It shows in particular
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that the 1D model can fit relatively well with the complex 3D model at a very lower computational cost.

5.3 The inverse problem with a variable compliance
The second inverse problem that is studied concerns the case of arteries having a compliance step that
can be due to different reasons (stent, plaques,...). The objective now is is to determine the characteristics
of this compliance step by looking at the values of the section area A and/or the volumic fluxe Q at
different positions. In the present case, the synthetic data are issued from a direct computation of the
1D model already presented in section 4.3 (Test case 2).

In order to determine the amount of informations needed to recover the correct parameters of the
model, two test function have been tested. Both have four parameters as unknowns : the position of
the compliance loss, a1 and a2, and the respective values, β1 and β2 of the function z → β(z) in both
zones,(see Figure 5). The two cost functions write respectively as :

J2(a1, a2, β1, β2) =
∑

pts∈{P,M,D}

78∑

i=0

|A(ti, pts)−Atarget(ti, pts)|2 +
1
10
|Q(ti, pts)−Qtarget(ti, pts)|2

and

J3(a1, a2, β1, β2) =
78∑

i=0

|A(ti, D)−Atarget(ti, D)|2

which means that the optimization is done with much less informations in the case of J3, namely the
section area values down the compliance step.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83
valeurs de section issues du calcul cible 1D en 3 points

t

p

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
−2

0

2

4

6

8

10

12

14

16
valeurs de debit issues du calcul cible 1D en 3 points

t

p

pt P (calcul cible)

pt M (calcul cible)

pt D (calcul cible)

pt P(après optmim.)

pt M (après optmim.)

pt D (après optmim.)

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
−10000

−5000

0

5000

10000

15000

20000

valeurs de pression issues du calcul cible 1D en 3 points

t

p

pt P (calcul cible)

pt M (calcul cible)

pt D (calcul cible)

pt P(après optmim.)

pt M (après optmim.)

pt D (après optmim.)

Fig. 9 – Section area, volumic flux and pressure at points P , M and D for the synthetic data and the
optimal 1D case, artery with variable compliance, cost function J2.

Both optimization process have been done by using a real-valued Genetic Algorithm with less than
400 evaluations. In both cases the four parameters have been chosen in a very large domain. In particular,
a1 and a2 are allowed to take all the values between 0 and 4 with a1 < a2.

In the case of the cost function J2, the four parameters characterizing the function z → β(z) have
been recovered with an excellent accuracy. It explains the perfect matching visible on Figure 9 of the
values of the optimal 1D model with the synthetic data.
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Fig. 10 – Section area, volumic flux and pressure at points P , M and D for the synthetic data and the
optimal 1D case, artery with variable compliance, cost function J3.

In the case of the cost function J3, the situation is slightly different as the optimization process is
only able to locate the position of the compliance step (that is a1 and a2) but not the exact amount of
it. More precisely, the obtained value of β1 matches the one used in the synthetic data but the value of
β2 is underpredicted by 50%. It can be observed on Figure 10 that the profile of the section area at point
D is similar for both models while there exists some significant differences at point P , that is upstream
the compliance step.
Acknowledgements : the author wishes to thank Jean-Frédéric Gerbeau for fruitful discussion on this
subject.

6. Conclusions

The inverse problem corresponding to the identification of the main parameter of a 1D model for
blood flow has been successfully solved. It has shown in particular that the optimal parameters may be
different from those expected from a formal averaging. Moreover, in the case of an artery with a loss
of compliance in some portion, the knowledge of only one area section profile downstream is enough to
locate the exact position of this disease portion. In the future, such model may thus be able to help
practioners for an efficient quick diagnosis of arteries pathologies such as stenosis.
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