Master de mathématiques M1. Analyse Fonctionnelle Appliquée 2. Année 2006/2007. Université Versailles-Saint Quentin

Examen 8 janvier 2007

14h00-17h00

Bât. Descartes, amphi E

L'usage des calculatrices, des téléphones portables et de tout document est interdit

Exercice 1.

Soit f une application continue de $\mathbb{R}_+^* \to \mathbb{R}$ telle que pour tout x > 0 on a f(nx) tend vers 0 quand n tend vers $+\infty$.

Soit $\varepsilon > 0$, on note $F_n = \{x \ge 1, |f(kx)| \le \varepsilon, \forall k \ge n\}$.

- 1) Montrer que F_n est fermé et, en appliquant le théorème de Baire qu'il existe n_0 tel que l'intérieur de $F_{n_0} \neq \emptyset$.
- 2) Montrer que si $\ell \in \mathbb{N}$, $\ell \geqslant 1$ et si $x \in F_n$ alors $\ell x \in F_n$.
- 3) Déduire des questions précédentes qu'il existe C > 0 tel que $[C, +\infty[\subset F_{n_0}]$ puis que $f(x) \to 0$ quand $x \to +\infty$.

Exercice 2.

Soit E un espace vectoriel normé. Soit P un sous-ensemble de E vérifiant,

- i) $\forall x, y \in P, \ \alpha, \beta \geqslant 0 \ \Rightarrow \alpha x + \beta y \in P.$
- ii) $x \in P$ et $-x \in P \Rightarrow x = 0$.

Soit F un sous-espace vectoriel de E vérifiant,

$$\forall x \in E , ((x+F) \cap P \neq \emptyset) \Leftrightarrow ((-x+F) \cap P \neq \emptyset).$$

1) Faire dans \mathbb{R}^2 un dessin d'un P vérifiant l'hypothèse ci-dessus, d'un F vérifiant l'hypothèse ci-dessus et d'un sous-espace G ne vérifiant pas l'hypothèse sur F ci-dessus.

Soit $f: F \to \mathbb{R}$ une application linéaire telle que pour tout $x \in P \cap F$ on a $f(x) \geq 0$.

Pour $x \in E$ on note $p(x) = \inf\{f(y), y \in F, y - x \in P\}.$

- 2) Montrer que $\forall x, z \in E$ on a $p(x+z) \leq p(x) + p(z)$ et $\forall x \in E$ et $\forall \lambda \geq 0$ on a $p(\lambda x) = \lambda p(x)$.
- 3) Montrer que si $x \in P$, on a $p(-x) \leq 0$.
- 4) Montrer qu'il existe $g: E \to \mathbb{R}$ telle que pour tout $x \in P$ on a $g(x) \ge 0$ et si $x \in F$, g(x) = f(x).

Exercice 3.

Soit $c = \{(x_n)_n \in \ell^{\infty}(\mathbb{N}), \lim x_n \text{ existe}\}$. Soit $s = (s_n)_n \in \ell^1(\mathbb{N})$, on définit $g : \ell^1(\mathbb{N}) \to c'$ par $\langle g(s), x \rangle = s_0 \lim x_n + \sum_{n=0}^{\infty} x_n s_{n+1}$ où $x = (x_n)_n \in c$.

- 1) Montrer que g est linéaire continue.
- 2) Montrer que $||g(s)||_{c'} = ||s||_{\ell^1(\mathbb{N})}$ en déduire que g est injective.
- 3) Montrer que g est surjective et donc que g est un isomorphime isométrique.

Exercice 4.

Soit E un espace de Banach reflexif. On suppose que si pour toute suite $(x_n)_n \in E$ telle que $x_n \rightharpoonup x$ alors $||x_n - x|| \to 0$.

Montrer que E est de dimension finie.