Agrégation marocaine de Mathématiques, session 2025

Epreuve de modélisation et Calcul Scientifique

Ecoulement en milieux poreux

Résumé : On s’intéresse a un modele d’écoulement en milieux poreux.

Mots clefs : Equations aux dérivées partielles. Différences finies. Systemes non linéaires.

> Il est rappelé que le jury n'exige pas une compréhension exhaustive du texte. Vous étes
laissé(e) libre d’organiser votre discussion comme vous l'entendez. Des suggestions de
développement, largement indépendantes les unes des autres, vous sont proposées en fin
de texte. Vous n'étes pas tenu(e) de les suivre. Il vous est conseillé de mettre en lumiere
vos connaissances a partir du fil conducteur constitué par le texte. Le jury appréciera
que la discussion soit accompagnée d’exemples traités sur ordinateur.

Dans tout le texte on dira qu'une fonction F de RY dans R" est coercive si elle tend vers
I'infini a I'infini, c’est-a-dire limy x| +00 | F(X) || = +00.

1. Introduction

On s’intéresse dans ce texte a un modele d’écoulement en milieu poreux. Un cadre typique
d’application de tels modeles est celui de I'industrie pétroliére. La situation géométrique bi-
dimensionnelle (trés simplifiée bien str) est celle décrite par la figure 1. Le pétrole est sup-
posé piégé dans la zone poreuse et les zones hachurées sont totalement imperméables. Le
but est de faire sortir le pétrole par les deux extrémités de la zone poreuse (a gauche et a
droite sur le dessin) en injectant de '’eau avec un certain débit a travers des puits représen-
tés sur la figure.

La zone poreuse est supposée rectiligne et de longueur 1 pour fixer les idées, de sorte que
la position horizontale dans celle-ci est repérée par une abscisse x € [0,1]. On se place dans
une situation stationnaire et on note Q(x) le débit de fluide (i.e. du mélange eau+pétrole) a
travers la section d’abscisse x orientée de gauche a droite. Autrement dit, pour tout intervalle

injection injection

i I

Zone poreuse

FIGURE 1. Configuration géométrique du gisement.
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de temps 6 ¢, la quantité de fluide qui traverse la section d’abscisse x est donnée par Q(x)dt.

On note f(x) le débit (entrant) de I'injection au point x. La fonction f est donc non nulle (et

par exemple constante) uniquement pour les abscisses correspondant aux zones d’injection.
Si on écrit le bilan des débits entre deux abscisses a < b quelconques, on obtient

b

) Q(b) - Q(a) :f fxadx,
a

ce qui fournit une premiere équation aux dérivées partielles

dQ
) — @) =fx), Vxe€]o,1[
dx !

Il reste maintenant a exprimer le débit Q en fonction de la pression p. Celle-ci est sup-
posée constante dans chaque section verticale de la zone poreuse, elle ne dépend donc que
de la variable x. A ce stade, plusieurs modeles peuvent étre donnés en fonction des proprié-
tés des divers fluides en présence et du milieu poreux considéré (sable, argile, etc...). Il est

raisonnable de penser que le débit est une fonction monotone du gradient de pression
3) Q) = - (dp(x)) Vxel0,1]
- (p dx ’ )

ou ¢ est une fonction de R dans R, de classe €1, strictement croissante, sans point critique,
coercive et avec ¢(0) = 0.

Donnons deux exemples de telles lois :

— Si on se place dans I’hypothése de faibles débits, on peut envisager une loi linéaire

4) @) = K¢,

ou K > 0 est un parametre du probleme.
— Dans le cas général, les lois sont plus complexes et on peut, par exemple, prendre

3 2K¢
- 1+\/1+|£|'

Enfin, les deux extrémités de la zone poreuse étant supposées a l'air libre, la pression a ces
deux extrémités est donc égale a la pression atmosphérique (qu'on prendra nulle quitte a
retrancher une constante a la pression).

En résumé, on est ramené a I’étude du probleme aux limites suivant

(5) @)

—i( (@(x)))—f(x) our0<x<1
(6) dx \?\dx R ’

p(0) = p(1) =0.

D’un point de vue pratique, pour les industriels du pétrole, une question pertinente est :
étant donnés la position et le débit des puits d’'injection (i.e. la fonction f dans le modele),
quel est le débit de pétrole en sortie que I’on va obtenir?
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2. Analyse théorique du modele

On souhaite ici démontrer le résultat suivant :

Théoréme 1. Soit ¢ une fonction de classe €' deR dans R, strictement croissante, sans point
critique et coercive. Pour toute fonction f continue sur [0,1], il existe une unique solution p
au probleme (6).

Pour justifier cela, on note, pour tout a € R, p, 'unique solution sur [0, 1] du probleme de
Cauchy

d dpa)) _
—a((p( dx))—f(x), pour0<x<1,
(7) pa(0) =0,
dpa .
x 0) =a.

On vérifie que cette solution s’exprime de la fagon suivante

X t
8) Palx) = fo w‘l(w(a)— fo f(u)du)dr,

et que la fonction @ € R— p,(1) € R est continue, strictement croissante et coercive. Il existe
donc une unique valeur ay de a pour laquelle on a

9) Pa,(1) =0.

La fonction pg, ainsi obtenue est bien I'unique solution de (6).
Remarquons que tout ce qui précéde fonctionne encore si la fonction f est seulement
continue par morceaux, on obtient alors une solution p de classe €2 par morceaux.

3. Approximation numérique des solutions

3.1. Approche par dichotomie

Les formules établies ci-dessus ne permettent manifestement pas le calcul explicite de
la solution de (6). On peut néanmoins s’en servir pour batir une méthode numérique en
s’'inspirant de la technique de démonstration du théoreme 1. Pour cela, pour tout parametre
a € R, on utilise une formule de quadrature pour calculer une approximation des p,. Plus
précisément, pour un entier N fixé et h =1/(IN+1),on pose x; =ih,0< i < N+1, on cherche
alors une approximation p; de p, au point x; par la récurrence

Po=0,

So=0,

Si+1:Si+hf(xi+l)’ Vie{ov---)N_]-})
pis1=pi+he Yp@) -8, Vielo,...,N}.

(10)
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On cherche ensuite I'unique «a tel que py+; =0, par exemple par une méthode de dicho-
tomie.

Cette approche fonctionne assez bien mais présente des inconvénients relativement rédhi-
bitoires. Tout d’abord, elle nécessite de pouvoir calculer explicitement I'inverse de la fonc-
tion ¢, ce qui n'est pas nécessairement accessible dans des situations complexes. Dans ce
cas, il faut envisager un calcul approché de ¢! a chaque étape du calcul. Par ailleurs, la
méthode n’est pas généralisable aux dimensions supérieures a 1.

3.2. Approche directe

On propose d’étudier directement le schéma aux différences finies suivant pour résoudre

le probléme :
Po=pn+1=0
(11) _l( (Pi+1_l9i)_ (pi_pi—l
R\ Uy P\

On vérifie que toute solution du schéma par dichotomie (10) (pour la bonne valeur de a
bien entendu) est aussi solution du schéma (11). Les deux méthodes proposées sont donc
équivalentes dans le cas présent mais la formulation (11) est adaptable a des cas beaucoup
plus généraux (notamment en dimension supérieure), c’est pourquoi nous en proposons ici
une étude directe.

)):f(xi), Vie{l,..., Nl

Théoreme 2. Pour toute fonction continue f, le schéma (11) admet une unique solution (p;)o<i<N+1-

Pour prouver cela, on définit une fonction non-linéaire ® : RY — R" par

oy L (Pi+1—Pi pi—Pi-1
(12) @i(p) =~ (o (=5 ) -0 (7
avec, par convention, py = pn+1 = 0, et on va montrer que ® est bijective.

Commencons par remarquer que pour tous p,q € RY, ona

)) vie(l,...,N},

Ceci montre que ® est monotone, c’est-a-dire que (®(p) — ®(gq), p — q) >0 pour tous p # g.
Le résultat général que I'on peut alors appliquer est le suivant :
Théoréme 3. Toute fonction ® de classe €', monotone et coercive deRYN dansR"N est bijective.

Soit b € RN, on veut trouver pE RN tel que ®(p) = b. L'unicité d'un tel p découle immédia-
tement de '’hypothése de monotonie. Pour démontrer I'existence d'une solution p, on peut
procéder de la facon suivante :

(1) Pour tout € > 0, on introduit la fonction ®.(p) = ®(p) + ep. Celle-ci vérifie
(14) (@e(p) - Pe(q), p—q) zellp-ql?, Vp,geR".

En particulier, pour tout p € RY, la matrice jacobienne D®,(p) est inversible et donc
I'image de @, est un ouvert.
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)
(15)

(16)

3)

17

4)
(18)

(19)

De (14), on déduit également que
(@c(p), p) 2l pl? + (@0),p), VpeRY,
et donc, par I'inégalité de Cauchy-Schwarz, on obtient
1)l = llpll - 19O, VpeRY.
En particulier, on a obtenu que ®, est coercive.

Montrons qu'il existe p; € RV tel que ®.(pe) = b. Pour cela, on définit p, € RY par le
probléme de minimisation suivant :

16— ®e(pe)ll = inf [|b—De(q)ll.
geR”

Un tel p, existe grace a la continuité de @, et a (16). Si |b— @ (pe)|l = 0, le résultat
est démontré. Supposons par 'absurde que [|b - ®.(p.)|l > 0. On a vu plus haut que
I'image de @, est un ouvert. Il existe donc r > 0 tel que la boule B(®,(p,), r) est incluse
dans I'image de ®.. Or il existe nécessairement un élément z de cette boule tel que
Ib—zll < |b—®:(p:)ll, ce qui contredit (17).

On a donc trouvé un p; € RN tel que ®.(p:) = b. D’apres (16), on a
ellpell = 11Dl + 11D O) I,
et donc, par définition de ®,, on trouve
[Pl < |De(pell + el pell < 211b1 + [P0

Comme P est coercive, I'inégalité précédente prouve que la famille (p,), est bornée. On
peut donc en extraire une suite (pe, ), qui converge vers un certain p € RY et en passant
a lalimite dans I'équation ®;, (p¢,) = b, on obtient que la limite p vérifie ®(p) = b etle
théoreme est démontré.

En pratique, on peut résoudre le systéme (11) en utilisant, par exemple, la méthode de
Newton qu’on pourra initialiser par n'importe quelle fonction non constante.

3.3. Résultats numériques

On applique les méthodes présentées ci-dessus pour la non-linéarité ¢(¢) = [{|¢ (méme
si cette fonction ne satisfait pas toutes les hypotheses requises précédemment), le terme
source f constant par morceaux qui vaut 10 sur [0.5,0.8] et qui vaut 0 partout ailleurs. On
prend N = 100 points de discrétisation.

La figure 2 donne les courbes de p, pour différentes valeurs de a entre 0 et 2. On obtient
approximativement la valeur ap = 0.91 du parametre a pour laquelle pg4,(1) = 0.

La figure 3 montre la solution de (6) obtenue en appliquant la méthode de Newton pour
les équations (11), une bonne précision étant obtenue au bout d’'une vingtaine d’itérations.
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FIGURE 2. Calcul de p, pour différentes valeurs de a.

profil de pression obtenu par differences finies
0.6

0.5 -f

05

0.45 -

0.4+

035 -

03

pression

0.25 -

0.2

0.15 -

0.1

0.05 -

FIGURE 3. Solution p calculée par le schéma aux différences finies.

Suggestions pour le développement

> Soulignons qu'il s'agit d'un menu a la carte et que vous pouvez choisir d'étudier certains
points, pas tous, pas nécessairement dans l'ordre, et de facon plus ou moins fouillée.
Vous pouvez aussi vous poser d’autres questions que celles indiquées plus bas. Il est tres
vivement souhaité que vos investigations comportent une partie traitée sur ordinateur
et, si possible, des représentations graphiques de vos résultats.

— Pourquuoi la stricte monotonie de la fonction ¢ dans le modéle est une hypothése na-
turelle?

— Détailler I'analyse théorique du modele présentée dans la section 2.

— Discuter et mettre en ceuvre la méthode numérique présentée dans la section 3.1 Peut-
on estimer, pour une valeur de « fixée, I'’erreur que 'on commet sur la valeur de p, (1) ?
En calculant la valeur du parametre a( pour différentes valeurs du nombre de points
N, que peut-on dire sur I'’erreur commise sur la fonction p?

— Détailler la démonstration des théorémes 2 et 3. Mettre en ceuvre 'approche par diffé-
rences finies de la section 3.2. On pourra en particulier calculer la matrice Jacobienne
du systeme et discuter de méthodes numériques adaptées pour calculer son inverse.
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