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Ecoulementùenùmilieuxùporeux

Résumé : On s’intéresse à un modèle d’écoulement en milieux poreux.

Mots clefs : Équations aux dérivées partielles. Différences finies. Systèmes non linéaires.

I Il est rappelé que le jury n’exige pas une compréhension exhaustive du texte. Vous êtes
laissé(e) libre d’organiser votre discussion comme vous l’entendez. Des suggestions de
développement, largement indépendantes les unes des autres, vous sont proposées en fin
de texte. Vous n’êtes pas tenu(e) de les suivre. Il vous est conseillé de mettre en lumière
vos connaissances à partir du fil conducteur constitué par le texte. Le jury appréciera
que la discussion soit accompagnée d’exemples traités sur ordinateur.

Dans tout le texte on dira qu’une fonction F de RN dans RN est coercive si elle tend vers
l’infini à l’infini, c’est-à-dire lim‖x‖→+∞ ‖F (x)‖ =+∞.

1. Introduction

On s’intéresse dans ce texte à un modèle d’écoulement en milieu poreux. Un cadre typique
d’application de tels modèles est celui de l’industrie pétrolière. La situation géométrique bi-
dimensionnelle (très simplifiée bien sûr) est celle décrite par la figure 1. Le pétrole est sup-
posé piégé dans la zone poreuse et les zones hachurées sont totalement imperméables. Le
but est de faire sortir le pétrole par les deux extrémités de la zone poreuse (à gauche et à
droite sur le dessin) en injectant de l’eau avec un certain débit à travers des puits représen-
tés sur la figure.

La zone poreuse est supposée rectiligne et de longueur 1 pour fixer les idées, de sorte que
la position horizontale dans celle-ci est repérée par une abscisse x ∈ [0,1]. On se place dans
une situation stationnaire et on note Q(x) le débit de fluide (i.e. du mélange eau+pétrole) à
travers la section d’abscisse x orientée de gauche à droite. Autrement dit, pour tout intervalle
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FIGURE 1. Configuration géométrique du gisement.
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de temps δt , la quantité de fluide qui traverse la section d’abscisse x est donnée par Q(x)δt .
On note f (x) le débit (entrant) de l’injection au point x. La fonction f est donc non nulle (et
par exemple constante) uniquement pour les abscisses correspondant aux zones d’injection.

Si on écrit le bilan des débits entre deux abscisses a < b quelconques, on obtient

(1) Q(b)−Q(a) =
∫ b

a
f (x)d x,

ce qui fournit une première équation aux dérivées partielles

(2)
dQ

d x
(x) = f (x), ∀x ∈]0,1[.

Il reste maintenant à exprimer le débit Q en fonction de la pression p. Celle-ci est sup-
posée constante dans chaque section verticale de la zone poreuse, elle ne dépend donc que
de la variable x. À ce stade, plusieurs modèles peuvent être donnés en fonction des proprié-
tés des divers fluides en présence et du milieu poreux considéré (sable, argile, etc. . . ). Il est
raisonnable de penser que le débit est une fonction monotone du gradient de pression

(3) Q(x) =−ϕ
(

d p

d x
(x)

)
, ∀x ∈ [0,1],

où ϕ est une fonction de R dans R, de classe C 1, strictement croissante, sans point critique,
coercive et avec ϕ(0) = 0.

Donnons deux exemples de telles lois :
— Si on se place dans l’hypothèse de faibles débits, on peut envisager une loi linéaire

(4) ϕ(ξ) = K ξ,

où K > 0 est un paramètre du problème.
— Dans le cas général, les lois sont plus complexes et on peut, par exemple, prendre

(5) ϕ(ξ) = 2K ξ

1+√
1+|ξ|

.

Enfin, les deux extrémités de la zone poreuse étant supposées à l’air libre, la pression à ces
deux extrémités est donc égale à la pression atmosphérique (qu’on prendra nulle quitte à
retrancher une constante à la pression).

En résumé, on est ramené à l’étude du problème aux limites suivant

(6)

− d

d x

(
ϕ

(
d p

d x
(x)

))
= f (x), pour 0 < x < 1,

p(0) = p(1) = 0.

D’un point de vue pratique, pour les industriels du pétrole, une question pertinente est :
étant donnés la position et le débit des puits d’injection (i.e. la fonction f dans le modèle),
quel est le débit de pétrole en sortie que l’on va obtenir ?
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2. Analyse théorique du modèle

On souhaite ici démontrer le résultat suivant :

Théorème 1. Soit ϕ une fonction de classe C 1 de R dans R, strictement croissante, sans point
critique et coercive. Pour toute fonction f continue sur [0,1], il existe une unique solution p
au problème (6).

Pour justifier cela, on note, pour tout α ∈R, pα l’unique solution sur [0,1] du problème de
Cauchy

(7)


− d

d x

(
ϕ

(
d pα
d x

))
= f (x), pour 0 < x < 1,

pα(0) = 0,

d pα
d x

(0) =α.

On vérifie que cette solution s’exprime de la façon suivante

(8) pα(x) =
∫ x

0
ϕ−1

(
ϕ(α)−

∫ t

0
f (u)du

)
d t ,

et que la fonction α ∈R 7→ pα(1) ∈R est continue, strictement croissante et coercive. Il existe
donc une unique valeur α0 de α pour laquelle on a

(9) pα0 (1) = 0.

La fonction pα0 ainsi obtenue est bien l’unique solution de (6).
Remarquons que tout ce qui précède fonctionne encore si la fonction f est seulement

continue par morceaux, on obtient alors une solution p de classe C 2 par morceaux.

3. Approximation numérique des solutions

3.1. Approche par dichotomie

Les formules établies ci-dessus ne permettent manifestement pas le calcul explicite de
la solution de (6). On peut néanmoins s’en servir pour bâtir une méthode numérique en
s’inspirant de la technique de démonstration du théorème 1. Pour cela, pour tout paramètre
α ∈ R, on utilise une formule de quadrature pour calculer une approximation des pα. Plus
précisément, pour un entier N fixé et h = 1/(N +1), on pose xi = i h, 0 ≤ i ≤ N +1, on cherche
alors une approximation pi de pα au point xi par la récurrence

(10)


p0 = 0,

S0 = 0,

Si+1 = Si +h f (xi+1), ∀i ∈ {0, . . . , N −1},

pi+1 = pi +hϕ−1(ϕ(α)−Si ), ∀i ∈ {0, . . . , N }.
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On cherche ensuite l’unique α tel que pN+1 = 0, par exemple par une méthode de dicho-
tomie.

Cette approche fonctionne assez bien mais présente des inconvénients relativement rédhi-
bitoires. Tout d’abord, elle nécessite de pouvoir calculer explicitement l’inverse de la fonc-
tion ϕ, ce qui n’est pas nécessairement accessible dans des situations complexes. Dans ce
cas, il faut envisager un calcul approché de ϕ−1 à chaque étape du calcul. Par ailleurs, la
méthode n’est pas généralisable aux dimensions supérieures à 1.

3.2. Approche directe

On propose d’étudier directement le schéma aux différences finies suivant pour résoudre
le problème :

(11)


p0 = pN+1 = 0

− 1

h

(
ϕ

(pi+1 −pi

h

)
−ϕ

(pi −pi−1

h

))
= f (xi ), ∀i ∈ {1, . . . , N }.

On vérifie que toute solution du schéma par dichotomie (10) (pour la bonne valeur de α

bien entendu) est aussi solution du schéma (11). Les deux méthodes proposées sont donc
équivalentes dans le cas présent mais la formulation (11) est adaptable à des cas beaucoup
plus généraux (notamment en dimension supérieure), c’est pourquoi nous en proposons ici
une étude directe.

Théorème 2. Pour toute fonction continue f , le schéma (11) admet une unique solution (pi )0≤i≤N+1.

Pour prouver cela, on définit une fonction non-linéaireΦ :RN 7→RN par

(12) Φi (p) =− 1

h

(
ϕ

(pi+1 −pi

h

)
−ϕ

(pi −pi−1

h

))
, ∀i ∈ {1, . . . , N },

avec, par convention, p0 = pN+1 = 0, et on va montrer queΦ est bijective.
Commençons par remarquer que pour tous p, q ∈RN , on a

(13) (Φ(p)−Φ(q), p −q) =
N∑

i=0

(
ϕ

(pi+1 −pi

h

)
−ϕ

(qi+1 −qi

h

)
,

pi+1 −pi

h
− qi+1 −qi

h

)
.

Ceci montre queΦ est monotone, c’est-à-dire que (Φ(p)−Φ(q), p −q) > 0 pour tous p 6= q .
Le résultat général que l’on peut alors appliquer est le suivant :

Théorème 3. Toute fonctionΦ de classe C 1, monotone et coercive de RN dans RN est bijective.

Soit b ∈RN , on veut trouver p ∈RN tel queΦ(p) = b. L’unicité d’un tel p découle immédia-
tement de l’hypothèse de monotonie. Pour démontrer l’existence d’une solution p, on peut
procéder de la façon suivante :

(1) Pour tout ε> 0, on introduit la fonctionΦε(p) =Φ(p)+εp. Celle-ci vérifie

(14) (Φε(p)−Φε(q), p −q) ≥ ε‖p −q‖2, ∀p, q ∈RN .

En particulier, pour tout p ∈ RN , la matrice jacobienne DΦε(p) est inversible et donc
l’image deΦε est un ouvert.
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(2) De (14), on déduit également que

(15) (Φε(p), p) ≥ ε‖p‖2 + (Φ(0), p), ∀p ∈RN ,

et donc, par l’inégalité de Cauchy-Schwarz, on obtient

(16) ‖Φε(p)‖ ≥ ε‖p‖−‖Φ(0)‖, ∀p ∈RN .

En particulier, on a obtenu queΦε est coercive.

(3) Montrons qu’il existe pε ∈ RN tel que Φε(pε) = b. Pour cela, on définit pε ∈ RN par le
problème de minimisation suivant :

(17) ‖b −Φε(pε)‖ = inf
q∈Rn

‖b −Φε(q)‖.

Un tel pε existe grâce à la continuité de Φε et à (16). Si ‖b −Φε(pε)‖ = 0, le résultat
est démontré. Supposons par l’absurde que ‖b −Φε(pε)‖ > 0. On a vu plus haut que
l’image deΦε est un ouvert. Il existe donc r > 0 tel que la boule B(Φε(pε),r ) est incluse
dans l’image de Φε. Or il existe nécessairement un élément z de cette boule tel que
‖b − z‖ < ‖b −Φε(pε)‖, ce qui contredit (17).

(4) On a donc trouvé un pε ∈RN tel queΦε(pε) = b. D’après (16), on a

(18) ε‖pε‖ ≤ ‖b‖+‖Φ(0)‖,

et donc, par définition deΦε, on trouve

(19) ‖Φ(pε)‖ ≤ ‖Φε(pε)‖+ε‖pε‖ ≤ 2‖b‖+‖Φ(0)‖.

CommeΦ est coercive, l’inégalité précédente prouve que la famille (pε)ε est bornée. On
peut donc en extraire une suite (pεn )n qui converge vers un certain p ∈RN et en passant
à la limite dans l’équationΦεn (pεn ) = b, on obtient que la limite p vérifieΦ(p) = b et le
théorème est démontré.

En pratique, on peut résoudre le système (11) en utilisant, par exemple, la méthode de
Newton qu’on pourra initialiser par n’importe quelle fonction non constante.

3.3. Résultats numériques

On applique les méthodes présentées ci-dessus pour la non-linéarité ϕ(ξ) = |ξ|ξ (même
si cette fonction ne satisfait pas toutes les hypothèses requises précédemment), le terme
source f constant par morceaux qui vaut 10 sur [0.5,0.8] et qui vaut 0 partout ailleurs. On
prend N = 100 points de discrétisation.

La figure 2 donne les courbes de pα pour différentes valeurs de α entre 0 et 2. On obtient
approximativement la valeur α0 = 0.91 du paramètre α pour laquelle pα0 (1) = 0.

La figure 3 montre la solution de (6) obtenue en appliquant la méthode de Newton pour
les équations (11), une bonne précision étant obtenue au bout d’une vingtaine d’itérations.
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FIGURE 2. Calcul de pα pour différentes valeurs de α.

FIGURE 3. Solution p calculée par le schéma aux différences finies.

Suggestions pour le développement

I Soulignons qu’il s’agit d’un menu à la carte et que vous pouvez choisir d’étudier certains
points, pas tous, pas nécessairement dans l’ordre, et de façon plus ou moins fouillée.
Vous pouvez aussi vous poser d’autres questions que celles indiquées plus bas. Il est très
vivement souhaité que vos investigations comportent une partie traitée sur ordinateur
et, si possible, des représentations graphiques de vos résultats.

— Pourquoi la stricte monotonie de la fonction ϕ dans le modèle est une hypothèse na-
turelle ?

— Détailler l’analyse théorique du modèle présentée dans la section 2.
— Discuter et mettre en œuvre la méthode numérique présentée dans la section 3.1 Peut-

on estimer, pour une valeur deα fixée, l’erreur que l’on commet sur la valeur de pα(1) ?
En calculant la valeur du paramètre α0 pour différentes valeurs du nombre de points
N , que peut-on dire sur l’erreur commise sur la fonction p ?

— Détailler la démonstration des théorèmes 2 et 3. Mettre en œuvre l’approche par diffé-
rences finies de la section 3.2. On pourra en particulier calculer la matrice Jacobienne
du système et discuter de méthodes numériques adaptées pour calculer son inverse.
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