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Summary. In this paper, we reformulate global optimization problems in terms of
boundary value problems. This allows us to introduce a new class of optimization
algorithms. Indeed, many optimization methods, including non-deterministic ones,
can be seen as discretizations of initial value problems for differential equations
or systems of differential equations. Two algorithms included in this new class are
applied and compared with a genetic algorithm for the design of multichannel optical
filters.

1 Introduction

Global minimization (or maximization) problems are of great practical impor-
tance in many applications. For this reason, Genetic Algorithms (GA) have
received a tremendous interest in recent years [1, 2, 5]. However, the main
difficulties with these algorithms remain their computational time and their
slow convergence.

Many minimization algorithms can be viewed as discrete forms of Cauchy
problems for an ordinary differential equation (ODE) or a system of ODEs
in the space of control parameters. We will see that if one introduces an extra
information on the infimum, these algorithms can be formulated as Boundary
Value Problems (BVP) for the same equations [3, 4]. A motivating idea is
therefore to apply algorithms solving BVPs to global optimization. It is in
particular shown that GAs be interpreted as a discrete form of BVPs for a set
of coupled ODEs. Therefore, the BVP analysis has also been applied to them
to improve their performances leading to the construction of a new algorithm
called HGSA. All the algorithms issued from our BVP analysis, presented
in section 2, are compared in section 3 to a classical GA for the design of a
multichannel optical filter.
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2 Global optimization methods

In this section, we consider a function J : 2,4 — IR to be minimized, where
the optimization parameter x belongs to a compact admissible set 2,4 C RY.

A unified dynamical system formulation is given for some stochastic and
deterministic optimization algorithms. In particular, even if GAs are issued
from evolutionary considerations, it is possible to associate to them a set of
stochastic coupled ODEs (see subsection 2.2). A new class of global minimiza-
tion methods is thus constructed, based on the solution of associated BVPs.

2.1 Semi-deterministic recursive optimization methods

We make here the following assumptions on the functional: J € C?(£2,4,R)
and is coercive [3]. In this case, many deterministic minimization algorithms
which perform the minimization of J can be seen as discretizations of the
following dynamical system [3, 4]:

MO = ~dtae) "
z(0) = xg

where ( is a fictitious parameter, M is a local metric transformation, d a
direction in 2,4 and zg € 2,4 is the initial condition.

For example if d = VJ is the gradient of the functional J and M = Id,
we recover the classical steepest descent method, while with d = VJ and
M = V2] the Hessian of .J, we recover the Newton method.

A global optimization of J with system (1), called here core optimization
method, is possible if the following boundary value problem has a solution:

MO 5 — —dtae) .

z(0) = x¢
J(x(Zy,)) = Jm with a finite Z,, € R

where J,,, denotes the minimum of J in {2,4. In practice, when .J,,, is unknown,
we set Jp, to a lower value (for example J,,, = 0 for an inverse problem) and
look for the best solution for a given complexity and computational effort.

The BVP (2) is over-determined as it includes two conditions and only one
derivative. The over determination can be removed for instance by considering
2o = v in (1) as a new variable to be found by the minimization of the new
functional:

h(v) = J(@0(Z0)) — T

where x,(Z,) is the solution of (1) found at ¢ = Z, starting from v.
A new algorithm A;(vq, v2) with parameters vy and vs is then defined as:

1= (v1,v2) € 24q X 244 given, vy # vy
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2- Find v € argmin,co(v,)M(w) where O(vz2) = Ruvs N 2,4
3- return the best v found during step 2

The line search minimization in A; might fail. For instance, a secant
method degenerates on plateau and critical points. To avoid this problem,
we add an external level to the algorithm A;, keeping v; unchanged, and
looking for ve by minimizing a new functional w +— h(A;(vy,w)). This leads
to the following two-level algorithm As(vq, v5):

1- (v1,05) € R4 X 244 given, vy # vh

—
2- Find v € argmingeco(wy) (A1 (v, w)) where O(vy) = Rvivy N 24g
3- return the best v’ found during step 2

The choice of the initial conditions in this algorithm is its only non-deter-
ministic feature. The algorithm Aj is thus called Semi-Determinist Algorithm
(SDA). A mathematical background for this approach as well as a validation
on academic test cases or on problems including solutions of nonlinear partial
differential equations are available [3, 5, 7, 10].

Remarks:

- The construction can be pursued recursively considering

h'(v5) = min A1 (A1 (01,05))
’U;E.Qad
with h!(v) = h(v) and where i denotes the external level, justifying the
name of recursive optimization methods.

- In practice, this algorithm succeeds if the trajectory passes close enough
to the infimum (i.e. in Be(x,,) where ¢ defines the chosen accuracy in
the capture of the infimum). Hence, in the algorithm above, z,,(Z,) is
replaced by the best solution found over [0, Z,,].

2.2 Genetic algorithms

Genetic algorithms approximate the global minimum (or maximum) of any
functional J : 2,4 — IR, also called fitness function, through a stochastic
process based on an analogy with the Darwinian evolution of species [1]: a
first family, called 'population’, X° = {2V € 2,4, | = 1,..,N,} of N,
possible solutions of the optimization problem, called ’individuals’, is ran-
domly generated in the search space (2,4. Starting from this population, we
build recursively Ny, new populations X’ = {z} € 2,4,] = 1,..., N,} with
1 = 1,.., Ngen, through three stochastic steps, called selection, crossover and
mutation. With these three basic evolution processes, it is generally observed
that the best obtained individual is getting closer after each generation to the
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optimal solution of the problem [1]. An example of such stochastic processes
is given below in order to show the analogy with the resolution of a discrete
dynamical system.

We first rewrite X* using the following (N, N)-real valued matrix form:

Xi=| : (3)

Selection: each individual x% is ranked with respect to its fitness value
J(x}) and N, elements are then selected among the population to become
‘parents’.

Introducing S™(J(X™)) a binary (Np, N,)-matrix with, for each line 1,
a value 1 on the jth row when the jth individual has been selected and 0
elsewhere, we define

Xn+1/3 — Sn(J(Xn))Xn (4)

Crossover: this process leads to a data exchange between two ’parents’
and the apparition of two new individuals called ’childrens’.

Introduce C™ a real-valued (N, Np)-matrix where for each couple of con-
secutive lines (20 —1,2¢) (1 <1i < %), the coefficients of the Ith and kth rows
are given by a 2 X 2 matrix of the form

A l—2X
Aol — X
In this expression, A\y = Ay = 1 if no crossover is applied on the selected

parents | and k or are randomly chosen in [0, 1] in the other case (with a
probability p.). This step can be summarized as:

Xn+2/3 :Can+1/3 (5)

Mutation: this process leads to new parameters values for some indivi-
duals of the population. More precisely, each children is modified (or mutated)
with a fixed probability py,.

Introduce for instance a random perturbation matrix £™ with a i-th line
equal to 0 if no mutation is applied to the ith children and a random value
¢; € IRY in the other case. This step can then take the following form:

X’n+1 — Xn+2/3 +5n (6)
or more generally

Xn+1 — f(Xn+2/3) (7)
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for a certain stochastic operator f in the space of (N, N)-real valued matrices.
Therefore, GAs can be seen as discrete dynamical systems, writing for
instance in the presented case:

XL = SR (J(X )X+ En 8)

which is a particular discretization of a set of nonlinear first order ODEs
of the type:

X(t) = Al(tv J(X(t))apcapm)X(t) + A2 (t7pcapm) (9)

where {p., pm} are fixed parameters and the construction of A; and Ay has
been described above. Finally, GAs can been interpreted as solving the fol-
lowing BVP:

X(t) = Al(t, J(X(t)),pc,pm)X(t) + Ag(t,pc,pm)
X(0) = x© (10)
J(X(T)) = Jm

~

where J(X) = min{J(x;)/1 <i < Np} for any X =*(x1,...,xn,)

Engineers like GAs because these algorithms do not require sensitivity
computation, perform global and multi-objective optimization and are easy to
parallelize. However, their drawbacks remain their weak mathematical back-
ground, their computational complexity and their slow convergence. As a fine
convergence is difficult to achieve with GA based algorithms, it is recom-
mended when it is possible, to complete the GA iterations by a descent
method. This is especially useful when the functional is flat around the infi-
mum (see [2] for more complex coupling of GAs with descent methods).

2.3 Hybrid genetic/semi-deterministic algorithm

It is interesting to notice that once GA is seen as a dynamical system (9)
for the population, it can be used as a core optimization method in the way
presented in subsection 2.1. The aim here is to find a compromise between
the robustness of GAs and the low-complexity features of SDAs.

In order to reduce the GA population size while keeping the efficiency
of the method, we couple it with a SDA. The SDA provides information
on the choice of the initial population X° whereas the GA performs global
optimization starting from this population. We call this approach HGSA
(Hybrid Genetic/Semi-deterministic Algorithm).

3 Application to multichannel optical filters design

Many important developments in optical fiber devices for telecommunications
have been done in the recent years. Among them are Fiber Bragg Gratings
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(FBG) which are an attractive alternative in applications such as multichan-
nel multiplexing. FBGs are optical fibers with a modulated refractive index
which reflects a part of the wavelength band, called reflected spectrum, and
let pass the complementary band called transmitted spectrum [8].

The inverse problem considered here is the design of a given optical filter
based on a FBG. More precisely, the objective is to construct a multichannel
filter with a reflected spectrum that consists of Npeqrs = 16 totally reflective
identical channels spaced of AX = 0.8nm. The optimization space consists
of all possible FBG refractive index modulation profiles for a given length,
namely L = 103.9mm.

These refractive index modulation profiles are generated by spline inter-
polation through a number of N = 9 points equally distributed along the
first half of the FBG and completed by parity with a maximum refractive
index amplitude of Myqe = 5 x 1074, Thus the search space is defined by
240 =[-5x107%5 x 1074]°.

The functional to be minimized in 2,4 is defined by:

N.

J(x) =Y (r(@ M) = Trarger(z, X)) (11)

i=1
where:

e r(z,.) is the reflected spectrum of the FBG with a refractive index mod-
ulation profile associated to z € §2,4. It is a function defined from the
transmission band [1.530, 1.545] (in microns) to [0, 1] which is determined
by solving a certain direct problem [9].

® Tiarget(,.) denotes the nearest perfect reflected spectrum to r(z,.):

Lif e {, e + AN .., A 4+ (Npeaks — 1) AN}
0 elsewhere

Ttarget(xv )\) = {

for a certain A\, in the transmission band.
Both functions r(x) and 7yqrget () are evaluated on N, = 1200 wavelengths
equally distributed on the transmission band.

Results

The minimization of the cost function (11), has been tested with various
algorithms presented in section 2, namely GA, HGSA and SDA algorithms.
The SDA method is applied with a core algorithm consisting of 10 iter-
ations of a steepest descent method and a line search made of 5 iterations
of a secant method for each level algorithm A; and As. The latter is initial-
ized with random initial conditions v, and v4. As the minimal value of J is
unknown, we set J,, = 0. Furthermore to reduce SDA computational time,
gradient evaluations (representing 90% of this time) are done on a coarse mesh
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with N, = 300 reducing the evaluation of a factor 4 (4s on a 3Ghz/512Mo
Ram-Desktop computer) for a gradient variation of approximately 10%. Such
method is called incomplete gradient approach [6].

HGSA and GA are applied with the following values: the population size is
set to IV, = 180 for GA (respectively 10 for HGSA) and the generation number
is set to Nge,, = 30 for GA (resp. 10 for HGSA). The selection is a roulette
wheel type [1, 2] proportional to the rank of the individual in the population.
The crossover is barycentric in each coordinate with a probability p. = 0.45.
The mutation process is non-uniform with a probability p,, = 0.15 for GA
(resp. 0.35 for HGSA). A one-elitism principle, that consists in keeping the
current best individual in the next generation, has also been imposed. Finally,
a steepest descent method is performed at the end of both algorithms.

The different optimization results are summarized in Table 1 whereas the
corresponding reflected spectra obtained with the optimized profiles are pre-
sented on Figure 1. Although only SDA optimization produces 16 totally
reflective peaks, GA and HGSA associated spectra are still industrially ap-
plicable due to the fact that in practice we only need 95%-reflective peaks [8].
The SDA method also gives the best result in terms of cost function minima
and computational time. Note also that the HGSA technique over-perform
a classical GA, providing an interesting alternative to SDA in cases where
gradients cannot be evaluated.

Table 1. Optimization results

SDA HGSA GA

minimal value of the cost function 3.0 43 58
Functional Evaluation Number 3000 (90% on coarse mesh) 2600 5500
Computational time 4h 11h  24h

08 08 08
0§ 08 08

0.4 04 04

02 ‘ ‘ 02 } I 02 } ‘

1.545 5 555 156 1565 155 155 156 1.545 155 1.555 156

Fig. 1. Reflected spectra of optimized filters(reflexivity vs. wavelength (um)) ob-
tained with (Left) SDA, (Center) HGSA and (Right) GA.
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4 Conclusions

A new class of semi-deterministic methods has been introduced. This ap-
proach allows us to improve deterministic and non-deterministic optimization
algorithms. Both of them have been detailed and applied to the design of a
multichannel optical filter for which the results obtained over-perform those
obtained with a classical genetic algorithm.

It represents a new validation of theses methods on industrial problems
involving multiple local minima after some previous others: temperature
and pollution control in a bunsen flame [10], shape optimization of fast-
microfluidic-mixer devices [5], shape optimization of under aerodynamic and
acoustic constraints for internal and external flows [6].
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