NUMERICAL
OPTIMIZATION and APPLICATIONS (Electif 9)
Laurent
DUMAS
Tahar BOULMEZAOUD
Archives : course 2009 , 2010
Course Objectives :
Many
problems occuring in industry consist in minimizing (or maximizing) a
certain cost function. This course is aimed to present various
optimization methods in order to solve such problems.
After a
general introduction on numerical optimization, two different
families of optimization methods will be presented: first, the
the stochastic methods (genetic algorithms, evolution strategies,
etc...) and then deterministic descent-type methods (gradient,
newton, etc…). A numerical implementation with Scilab of these
differents methods will be done during the computer sessions, before
being applied for the resolution of applicative problems
Teachers : L . Dumas , T. Boulmezaoud (Université de Versailles)
Course prerequisites
:
No specific prerequisites are needed for this course.
It
is accessible with basic tools in analysis (functions of n
variables).
Syllabus (see timetable ):
Mercredi 02 février (14-17h, LD): cours
1. Introduction et exemples (presentation ppt , fichier Scilab LJ )
2. Conditions d'optimalité
2.1 Formules de Taylor
2.2 CN d'ordre 1, probleme sans contrainte
2.3
CN d'ordre 1, probleme avec contrainte égalité
2.4 CN d'ordre 1, probleme avec contrainte inégalité
Vendredi 04 février (8h-11h, TB): cours + TD (TD1.pdf )
3. Programmation convexe
3.1 Rappels sur la convexité
3.2 Programme convexe et conditions d'optimalité
3.3 Introduction à la sous-différentielle
Mercredi 16 février (14-17h) LD: cours+TP Scilab
4.Optimization algorithms for unconstrained problems
steepest descent method: definition, convergence result and
implementation with Scilab (programme
Scilab )
Newton, quasi Newton method
Vendredi 18 février (08-11h) TB
Mercredi 23 février (14-17h) TB
Vendredi 25 février (8h-11h) TB
5.Simplex method
Implementation of the simplex method ( programme Scilab )
Mercredi 2 mars (14-17h) LD
6.Non deterministic methods
6.1 Simulated annealing (annealing.sci
)
6.2 Genetic algorithms (GA-binary2011.sci
)
Vendredi 4 mars (8h-11h) LD
6.2 (suite) + Particle Swarm optimization ( ECP2011-PSO.sci )
Pas de cours le Mercredi 9 mars
Vendredi 11 mars (8h-11h) TB
TD3 (conjugate gradient)
Mercredi 16 mars (14-17h) LD
6.3 Some questions about non deterministic methods:
Constraints handling (Scilab script ecp-canette-AG.sci
)
Multi objective optimization (Scilab script NSGA-2010.sci
)
Surrogate models (Scilab script ECP2011-RBF.sci
and slides )
References :
Livres:
Numercial
optimization, theoretical and practical aspects : JF Bonnans, JC
Gilbert, C. Lemaréchal, C. Sagastizbal, Springer Verlag
2003.
Genetic
Algorithms on search, optimization and machine learning : D.
Goldberg, 1989
Multi-Objective
Optimization Using Evolutionary Algorithms , K. Deb, 2001
Articles (online):
An
introdution to algorithms for non linear optimization : N. Gould,
S. Leyffer
Exam :
Training :
Examen 2010 , rattrapage 2010 , examen 2009 , rattrapage 2009